References
- AbdelAleem, B.H. and Hassan, A.A.A. (2019), "Influence of synthetic fibers' type, length, and volume on enhancing the structural performance of rubberized concrete", Constr. Build. Mater., 229, 116861. https://doi.org/10.1016/j.conbuildmat.2019.116861.
- Ahmed, S.F.U., Maalej, M. and Paramasivam, P. (2007), "Flexural responses of hybrid steel-polyethylene fiber reinforced cement composites containing high volume fly ash", Constr. Build. Mater., 21(5), 1088-1097. https://doi.org/10.1016/j.conbuildmat.2006.01.002.
- Ali, B., Qureshi, L.A. and Kurda, R. (2020), "Environmental and economic benefits of steel, glass, and polypropylene fiber reinforced cement composite application in jointed plain concrete pavement", Compos. Commun., 22, 100437. https://doi.org/10.1016/j.coco.2020.100437.
- Altalabani, D., Bzeni, D.K.H. and Linsel, S. (2020), "Mechanical properties and load deflection relationship of polypropylene fiber reinforced self-compacting lightweight concrete", Constr. Build. Mater., 252, 119084. https://doi.org/10.1016/j.conbuildmat.2020.119084.
- ASTM (2012), ASTM C1609/C1609M-12. Standard test method for flexural performance of fberreinforced concrete (using beam with third-point loading), ASTM International.
- ASTM (2014), ASTM C469/C469M-14. Standard Test Method for Static Modulus of Elasticity and Poisson's Ratio of Concrete in Compression, ASTM International, West Conshohocken, PA.
- ASTM (2015), ASTM C143/C143M-15a, Standard Test Method for Slump of HydraulicCement Concrete, ASTM International, West Conshohocken, PA.
- ASTM (2017), ASTM C138/C138M-17a, Standard Test Method for Density (Unit Weight), Yield, and Air Content (Gravimetric) of Concrete, ASTM International,West Conshohocken, PA.
- ASTM (2017), ASTM C231/C231M-17a, Standard Test Method for Air Content of Freshly Mixed Concrete by the Pressure Method, ASTM International, West Conshohocken, PA.
- ASTM (2017), ASTM C496/C496M-17, Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens, ASTM International, West Conshohocken, PA.
- ASTM (2018), ASTM C39/C39M-18, Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens, ASTM International, West Conshohocken, PA.
- ASTM (2020), ASTM C109/C109M-20a Standard Test Method for Compressive Strength of Hydraulic Cement Mortars, ASTM International, West Conshohocken, PA.
- Beigi, M.H., Berenjian, J., Omran, O.L., Nik, A.S. and Nikbin, I.M. (2013), "An experimental survey on combined effects of fibers and nanosilica on the mechanical, rheological, and durability properties of self-compacting concrete", Mater. Des., 50, 1019-1029. https://doi.org/10.1016/j.matdes.2013.03.046.
- Betterman, L.R., Ouyang, C. and Shah, S.P. (1995), "Fiber-matrix interaction in microfiber-reinforced mortar", Adv. Cement Bas. Mater., 2(2), 53-61. https://doi.org/10.1016/1065-7355(95)90025-X.
- Buratti, N., Mazzotti, C. and Savoia, M. (2011), "Post-cracking behaviour of steel and macro-synthetic fibre-reinforced concretes", Constr. Build. Mater., 25(5), 2713-2722. https://doi.org/10.1016/j.conbuildmat.2010.12.022.
- Choi, Y. and Yuan, R.L. (2005), "Experimental relationship between splitting tensile strength and compressive strength of GFRC and PFRC", Cement Concrete Res., 35(8), 1587-1591. https://doi.org/10.1016/j.cemconres.2004.09.010.
- Dawood, E.T. and Ramli, M. (2011), "High strength characteristics of cement mortar reinforced with hybrid fibres", Constr. Build. Mater., 25(5), 2240-2247. https://doi.org/10.1016/j.conbuildmat.2010.11.008.
- Dawood, E.T. and Ramli, M. (2012), "Mechanical properties of high strength flowing concrete with hybrid fibers", Constr. Build. Mater., 28(1), 193-200. https://doi.org/10.1016/j.conbuildmat.2011.08.057.
- di Prisco, M., Plizzari, G. and Vandewalle, L. (2009), "Fibre reinforced concrete: new design perspectives", Mater. Struct., 42(9), 1261-1281. https://doi.org/10.1617/s11527-009-9529-4.
- Dopko, M., Najimi, M., Shafei, B., Wang, X., Taylor, P. and Phares, B.M. (2018), "Flexural performance evaluation of fiber-reinforced concrete incorporating multiple macro-synthetic fibers", Tran. Res. Record: J. Transp. Res. Board, 2672(27), 1-12. https://doi.org/10.1177/0361198118798986.
- Gao, D. and Zhang, L. (2018), "Flexural performance and evaluation method of steel fiber reinforced recycled coarse aggregate concrete", Constr. Build. Mater., 159, 126-136. https://doi.org/10.1016/j.conbuildmat.2017.10.073.
- Gencel, O., Ozel, C., Brostow, W. and Martinez-Barrera, G. (2011), "Mechanical properties of self-compacting concrete reinforced with polypropylene fibres", Mater. Res. Innov., 15(3), 216-225. https://doi.org/10.1179/143307511X13018917925900.
- Guerini, V., Conforti, A., Plizzari, G. and Kawashima, S. (2018), "Influence of steel and macro-synthetic fibers on concrete properties", Fiber., 6(3), 47. https://doi.org/10.3390/fib6030047.
- Guler, S. (2018), "The effect of polyamide fibers on the strength and toughness properties of structural lightweight aggregate concrete", Constr. Build. Mater., 173, 394-402. https://doi.org/10.1016/j.conbuildmat.2018.03.212.
- Hamoush, S., Abu-Lebdeh, T. and Cummins, T. (2010), "Deflection behavior of concrete beams reinforced with PVA micro-fibers", Constr. Build. Mater., 24(11), 2285-2293. https://doi.org/10.1016/j.conbuildmat.2010.04.027.
- Hasan, M., Afroz, M. and Mahmud, H. (2011), "An experimental investigation on mechanical behavior of macro synthetic fiber reinforced concrete", Int. J. Civil Environ. Eng, 11(3), 19-23.
- Hsie, M., Tu, C. and Song, P.S. (2008), "Mechanical properties of polypropylene hybrid fiber-reinforced concrete", Mater. Sci. Eng.: A, 494(1-2), 153-157. https://doi.org/10.1016/j.msea.2008.05.037.
- Hussain, I., Ali, B., Akhtar, T., Jameel, M.S. and Raza, S.S. (2020), "Comparison of mechanical properties of concrete and design thickness of pavement with different types of fiber-reinforcements (steel, glass, and polypropylene)", Case Stud. Constr. Mater., 13, e00429. https://doi.org/10.1016/j.cscm.2020.e00429.
- Juhasz, K.P. and Kis, V. (2017), "The effect of the length of macro synthetic fibres on their performance in concrete", IOP Conf. Ser.: Mater. Sci. Eng., 246, 012027. https://doi.org/10.1088/1757-899X/246/1/012027
- Kim, B., Boyd, A.J., Kim, H.S. and Lee, S.H. (2015), "Steel and synthetic types of fibre reinforced concrete exposed to chemical erosion", Constr. Build. Mater., 93, 720-728. https://doi.org/10.1016/j.conbuildmat.2015.06.023.
- Kim, M.S., Lee, Y.H., Kim, H., Scanlon, A. and Lee, J. (2011), "Flexural behavior of concrete beams reinforced with aramid fiber reinforced polymer (AFRP) bars", Struct. Eng. Mech., 38(4), 459-477. https://doi.org/10.12989/sem.2011.38.4.459.
- Kotecha, P. and Abolmaali, A. (2019), "Macro synthetic fibers as reinforcement for deep beams with discontinuity regions: Experimental investigation", Eng. Struct., 200, 109672. https://doi.org/10.1016/j.engstruct.2019.109672.
- Lee, G., Han, D.Y., Han, M.C., Han, C.G. and Son, H.J. (2012), "Combining polypropylene and nylon fibers to optimize fiber addition for spalling protection of high-strength concrete", Constr. Build. Mater., 34, 313-320. https://doi.org/10.1016/j.conbuildmat.2012.02.015.
- Lee, J.H., Cho, B. and Choi, E. (2017), "Flexural capacity of fiber reinforced concrete with a consideration of concrete strength and fiber content", Constr. Build. Mater., 138, 222-231. https://doi.org/10.1016/j.conbuildmat.2017.01.096.
- Mazaheripour, H., Ghanbarpour, S., Mirmoradi, S.H. and Hosseinpour, I. (2011), "The effect of polypropylene fibers on the properties of fresh and hardened lightweight self-compacting concrete", Constr. Build. Mater., 25(1), 351-358. https://doi.org/10.1016/j.conbuildmat.2010.06.018.
- Medina, N.F., Barluenga, G. and Hernandez-Olivares, F. (2014), "Enhancement of durability of concrete composites containing natural pozzolans blended cement through the use of Polypropylene fibers", Compos. Part B-Eng., 61, 214-221. https://doi.org/10.1016/j.compositesb.2014.01.052.
- Murthy, A.R. and Ganesh, P. (2019), "Effect of steel fibres and nano silica on fracture properties of medium strength concrete", Adv. Concrete Constr., 7(3), 143-150. https://doi.org/10.12989/acc.2019.7.3.143.
- Pakravan, H.R. and Ozbakkaloglu, T. (2019), "Synthetic fibers for cementitious composites: A critical and in-depth review of recent advances", Constr. Build. Mater., 207, 491-518. https://doi.org/10.1016/j.conbuildmat.2019.02.078.
- Park, S.S. (2011), "Unconfined compressive strength and ductility of fiber-reinforced cemented sand", Constr. Build. Mater., 25(2), 1134-1138. https://doi.org/10.1016/j.conbuildmat.2010.07.017.
- Pereira, M.F., De Nardin, S. and El Debs, A.L.H.C. (2020), "Partially encased composite columns using fiber reinforced concrete: experimental study", Steel Compos. Struct., 34(6), 909-927. https://doi.org/10.12989/scs.2020.34.6.909.
- Rajeshwari, B.R. and Sivakumar, M.V.N. (2020), "Influence of coarse aggregate properties on specific fracture energy of steel fiber reinforced self compacting concrete", Adv. Concrete Constr., 9(2), 173-181. https://doi.org/10.12989/acc.2020.9.2.173.
- Raza, S.S., Qureshi, L.A., Ali, B., Raza, A. and Khan, M.M. (2020), "Effect of different fibers (steel fibers, glass fibers, and carbon fibers) on mechanical properties of reactive powder concrete", Struct. Concrete, 22(1), 334-346. https://doi.org/10.1002/suco.201900439.
- Sadrinejad, I., Madandoust, R. and Ranjbar, M.M. (2018), "The mechanical and durability properties of concrete containing hybrid synthetic fibers", Constr. Build. Mater., 178, 72-82. https://doi.org/10.1016/j.conbuildmat.2018.05.145.
- Sadrmomtazi, A., Gashti, S.H. and Tahmouresi, B. (2020), "Residual strength and microstructure of fiber reinforced self-compacting concrete exposed to high temperatures", Constr. Build. Mater., 230, 116969. https://doi.org/10.1016/j.conbuildmat.2019.116969.
- Society, C. (2003), Concrete Industrial Ground Floors: A Guide to Design and Construction, Concrete Society.
- Song, P.S., Hwang, S. and Sheu, B.C. (2005), "Strength properties of nylon- and polypropylene-fiber-reinforced concretes", Cement Concrete Res., 35(8), 1546-1550. https://doi.org/10.1016/j.cemconres.2004.06.033.
- Soutsos, M.N., Le, T.T. and Lampropoulos, A.P. (2012), "Flexural performance of fibre reinforced concrete made with steel and synthetic fibres", Constr. Build. Mater., 36, 704-710. https://doi.org/10.1016/j.conbuildmat.2012.06.042.
- Sukontasukkul, P., Pongsopha, P., Chindaprasirt, P. and Songpiriyakij, S. (2018), "Flexural performance and toughness of hybrid steel and polypropylene fibre reinforced geopolymer", Constr. Build. Mater., 161, 37-44. https://doi.org/10.1016/j.conbuildmat.2017.11.122.
- Wang, J., Dai, Q., Si, R. and Guo, S. (2019), "Mechanical, durability, and microstructural properties of macro synthetic polypropylene (PP) fiber-reinforced rubber concrete", J. Clean. Prod., 234, 1351-1364. https://doi.org/10.1016/j.jclepro.2019.06.272.
- Yap, S.P., Goh, Y., Goh, W.X., Mo, K.H., Liu, M.Y.J. and Ibrahim, H.A. (2020), "Relationship between microstructure and performance of polypropylene fibre reinforced cement composites subjected to elevated temperature", Eur. J. Environ. Civil Eng., 1-15. https://doi.org/10.1080/19648189.2020.1734489.
- Yin, S., Tuladhar, R., Shi, F., Combe, M., Collister, T. and Sivakugan, N. (2015), "Use of macro plastic fibres in concrete: A review", Constr. Build. Mater., 93, 180-188. https://doi.org/10.1016/j.conbuildmat.2015.05.105.
- Yoo, D.Y., Min, K.H., Lee, J.H. and Yoon, Y.S. (2014), "Shrinkage and cracking of restrained ultra-high-performance fiber-reinforced concrete slabs at early age", Constr. Build. Mater., 73, 357-365. https://doi.org/10.1016/j.conbuildmat.2014.09.097.
- Yoo, D.Y., Park, J.J., Kim, S.W. and Yoon, Y.S. (2013), "Early age setting, shrinkage and tensile characteristics of ultra high performance fiber reinforced concrete", Constr. Build. Mater., 41, 427-438. https://doi.org/10.1016/j.conbuildmat.2012.12.015.
- Zollo, R.F. (1997), "Fiber-reinforced concrete: an overview after 30 years of development", Cement Concrete Compos., 19(2), 107-122. https://doi.org/10.1016/S0958-9465(96)00046-7.