• Title/Summary/Keyword: fiber-reinforced concretes

Search Result 46, Processing Time 0.02 seconds

Material property of fiber reinforced concrete according to the fiber blended ratio (섬유 혼입 비율에 따른 섬유보강 콘크리트의 재료특성)

  • Park Choon Gun;Kim Nam Hol;Lee Jong Pil;Kim Hag Youn
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.632-635
    • /
    • 2004
  • In this paper, material property of fiber reinforced concrete(FRC) according to the steel fiber, glass fiber and carbon fiber blended ratio. The fiber reinforced concretes are increased mechanical strength, because the fibers are dispersed with randomly direction and disturb crack progression in concretes. Adhesive fracture is occurred slowly at interface between fiber and concrete, and the fracture energy is absorbed due to softening phenomenon.

  • PDF

Mechanical properties of natural fiber-reinforced normal strength and high-fluidity concretes

  • Kim, Joo-Seok;Lee, Hyoung-Ju;Choi, Yeol
    • Computers and Concrete
    • /
    • v.11 no.6
    • /
    • pp.531-539
    • /
    • 2013
  • An experimental investigation of mechanical properties of jute fiber-reinforced concrete (JFRC) has been reported for making a suitable construction material in terms of fiber reinforcement. Two jute fiber reinforced concretes, called jute fiber reinforced normal strength concrete (JFRNSC) and jute fiber-reinforced high-fluidity concrete (JFRHFC), were tested in compression, flexure and splitting tension. Compressive, flexural and splitting tensile strengths of specimens were investigated to four levels of jute fiber contents by volume fraction. From the test results, Jute fiber can be successfully used for normal strength concrete (NSC) and high-fluidity concrete (HFC). Particularly, HFC with jute fibers shows relatively higher improvement of strength property than that of normal strength concrete.

Performance of concrete structures with a combination of normal SCC and fiber SCC

  • Farhang, Kianoosh;Fathi, Hamoon
    • Computers and Concrete
    • /
    • v.20 no.6
    • /
    • pp.655-661
    • /
    • 2017
  • Fiber reinforced concretes exhibit higher tensile strength depending on the percent and type of the fiber used. These concretes are used to reduce cracks and improve concrete behavior. The use of these fibers increases the production costs and reduces the compressive strength to a certain extent. Therefore, the use of fiber reinforced concrete in regions where higher tensile strength is required can cut costs and improve the overall structural strength. The behavior of fiber reinforced concrete and normal concrete adjacent to each other was investigated in the present study. The concrete used was self-compacting and did not require vibration. The samples had 0, 1, 2 and 4 wt% polypropylene fibers. 15 cm sample cubes were subjected to uniaxial loads to investigate their compressive strength. Fiber Self-Compacting Concrete was poured in the mold up to 0, 30, 50, 70 and 100 percent of the mold height, and then Self-Compacting Concrete without fiber was added to the empty section of that mold. In order to investigate concrete behavior under bending moment, concrete beam samples with similar conditions were prepared and subjected to the three-point bending flexural test. The results revealed that normal Self-Compacting Concrete and Fiber Self-Compacting Concrete may be used in adjacent to each other in structures and structural members. Moreover, no separation was observed at the interface of Fiber Self-Compacting Concrete and Self-Compacting Concrete, either in the cubic samples under compression or in the concrete beams under bending moment.

The Relationship between Splitting Tensile Strength and Compressive Strength of Fiber Reinforced Concretes

  • Choi, Yeol;Kang, Moon-Myung
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.1
    • /
    • pp.155-161
    • /
    • 2003
  • This paper presents experimental and analytical results of glass fiber-reinforced concrete (GFRC) and polypropylene fiber-reinforced concrete (PERC) to investigate the relationship between tensile strength and compressive strength based on the split cylinder test (ASTM C496) and compressive strength test (ASTM C39). Experimental studies were performed on cylinder specimens having 150 mm in diameter an 300 mm in height with two different fiber contents (1.0 and 1.5% by volume fraction) at ages of 7, 28 and 90 days. A total of 90 cylinder specimens were tested including specimens made of the plain concrete. The experimental data have been used to obtain the relationship between tensile strength and compressive strength. A representative equation is proposed for the relationship between tensile strength and compressive strength of fiber-reinforced concrete (FRC) including glass and polypropylene fibers. There is a good agreement between the average experimental results and those calculated values from the proposed equation.

Fresh, flexural and mechanical performance of polyamide and polypropylene based macro-synthetic fiber-reinforced concretes

  • Koksal, Fuat;Bacanli, Cem;Benli, Ahmet;Gencel, Osman
    • Structural Engineering and Mechanics
    • /
    • v.82 no.1
    • /
    • pp.93-105
    • /
    • 2022
  • The brittleness of concrete can be overcome by fiber reinforcement that controls the crack mechanisms of concrete. Corrosion-related durability issues can be prevented by synthetic fibers (SFs), while macro synthetic fibers have proven to be particularly effective to provide ductility and toughness after cracks. This experimental study has been performed to investigate the comparative flexural and mechanical behavior of four different macro-synthetic fiber-reinforced concretes (SFRCs). Two polyamide fibers (SF1 and SF2) with different aspect ratios and two different polypropylene fiber types (SF3 and SF4) were used in production of SFRCs. Four different SFRCs and reference concrete were compared for their influences on the toughness, compressive strength, elastic modulus, flexural strength, residual strength and splitting tensile strength. The outcomes of the study reveal that the flowability of reference mixture decreases after addition of SFs and the air voids of all SFRC mixtures increased with the addition of macro-synthetic fibers except SFRC2 mixture whose air content is the same as the reference mixture. The results also revealed that with the inclusion of SFs, 11.34% reduction in the cube compressive strength was noted for SFRC4 based on that of reference specimens and both reference concrete and SFRC exhibited nearly similar cylindrical compressive strength. Results illustrated that SFRC1 and SFRC4 mixtures consistently provide the highest and lowest flexural toughness values of 36.4 joule and 27.7 joule respectively. The toughness values of SFRC3 and SFRC4 are very near to each other.

Study of Material Behavior of Concretes Using CSL Model (CSL 모델을 이용한 콘크리트의 재료거동 연구)

  • Zi, Goang-Seup;Jung, Jin-Kyu
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.377-380
    • /
    • 2006
  • The recently developed confinement-shear lattice model is reviewed. The procedure for generating aggregates in a given specimen and the constitutive model for on aggregate-cement strut are shown. It is suggested that the model can easily be extended for early age concretes and fiber reinforced concretes. The state-of-art of the extension and the general procedure of the extension are given in this paper.

  • PDF

A Study on the Residual Mechanical Properties of Fiber Mixed Concrete with High Temperature and Load (고온 및 하중에 따른 섬유혼입 콘크리트의 잔존역학적 특성에 관한 연구)

  • Yoon, Dae-Ki;Kim, Gyu-Yong;Choe, Gyeong-Choel;Lee, Tae-Gyu;Koo, Kyung-Mo;Kim, Hong-Seop
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.11a
    • /
    • pp.119-120
    • /
    • 2011
  • Recently, the effects of high temperature and fiber content on the residual mechnical properties of high-strength concrete were experimentally investigated. In this paper, residual mechanical properties of concrete with water to cement (w/c) ratios of 55%, 42% and 32% exposed to high temperature are compared with those obtained in fiber reinforced concretes of similar characteristics with the ranging of 0,05% to 0,20% polypropylene (PP) fibers by volume of concrete, and considered factors include pre-load levels (20% and 40% of the maximum load at room temperature). Outbreak time and water contents were tested and were determined the compressive strength. In the result, it is showed that to prevent the explosive spalling of 50MPa grade concretes exposed to high temperature need more than 0.05Vol.% PP fibers. Also, the cross-sectional area of PP fiber can influence on the residual mechanical properties and the spalling tendency of fiber reinforced concrete exposed to high temperature. Especially, the external loading increases not only the residual mechanical properties of concrete but also the risk of spalling and the brittle tendency.

  • PDF

Strength Evaluation for Doubly Reinforced Composite Beams with Steel Fiber Concretes and Steel Angles (강섬유 콘크리트와 형강을 사용한 합성 복근보의 강도 특성)

  • Oh, Young-Hun;Nam, Young-Gil;Lee, Jae-Yeon
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.6
    • /
    • pp.755-763
    • /
    • 2008
  • The purpose of this study is to investigate the structural performance of doubly reinforced composite beams with steel fiber concretes and steel angles. For this purpose, total 6 specimens whose variables are shear span-to-depth ratio, existence of shear reinforcement, and shear reinforcement details, are made and tested. All specimens are constructed of steel fiber concretes with specified compressive strength of 30 MPa and steel fiber volumn content of 1%. From the experimental results, structural performance of doubly reinforced composite beams are evaluated in terms of strength, stiffness, ductility, and energy absorbing capacity. For the better structural performance, it is recommended that the composite beam is designed with diagonal shear reinforcement.

A Study on Fatigue Characteristics and Economic Analysis of Discharged Nylon Fiber-Reinforced Asphalt Concrete (폐나일론을 이용한 섬유보강 아스팔트 콘크리트의 피로특성 및 경제성 분석)

  • Baek, Ingyu;Park, Kisun;Kim, Nakseok
    • Journal of the Society of Disaster Information
    • /
    • v.9 no.4
    • /
    • pp.476-483
    • /
    • 2013
  • In this study, discharged nylon fibers were added to asphalt concretes to be compared with fatigue life and analyzed in economic point of view. A four point bending fatigue test was conducted, and as a result, nylon fiber reinforced asphalt concretes that showed a 10percent increase in fatigue life compared to ordinary asphalt concrete. The economic analysis confirmed that the maintenance cost was decreased by 540 million won throughout the analyzing period. It is thought discharged nylon fiber reinforced asphalt will cause more economic and social effects than was shown by life cycle cost analysis.

Compressive and Flexural Properties of Hemp Fiber Reinforced Concrete

  • Li, Zhijian;Wang, Lijing;Wang, Xungai
    • Fibers and Polymers
    • /
    • v.5 no.3
    • /
    • pp.187-197
    • /
    • 2004
  • The compressive and flexural properties of hemp fiber reinforced concretes (FRC) were examined in this paper. Natural hemp fiber was mixed using dry and wet mixing methods to fabricate the FRC. Mechanical properties of the FRC were investigated. The main factors affecting compressive and flexural properties of the FRC materials were evaluated with an orthogonal test design. Fiber content by weight has the largest effect. The method for casting hemp FRC has been optimised. Under the optimum conditions, compressive strength increased by 4 %, flexural strength increased by 9 %, flexural toughness increased by 144 %, and flexural toughness index increased by 214 %.