DOI QR코드

DOI QR Code

The color stability and antibacterial of provisional polyethyl methacrylate (PEMA) resin with zirconia nanoparticles

지르코니아 나노입자 첨가된 PEMA (Polyethyl Methacrylate)레진 표면의 색안정성 및 항균평가

  • Kim, Hee-Seon (Department of Prosthodontics, School of Dentistry, Chonnam National University) ;
  • Lee, Seon-Ki (Department of Prosthodontics, Daejeon Dental Hospital, Wonkwang University) ;
  • Jang, Woohyung (Department of Prosthodontics, School of Dentistry, Chonnam National University) ;
  • Park, Chan (Department of Prosthodontics, School of Dentistry, Chonnam National University) ;
  • Lim, Hyun-Pil (Department of Prosthodontics, School of Dentistry, Chonnam National University)
  • 김희선 (전남대학교 치의학전문대학원 보철학교실) ;
  • 이선기 (원광대학교 치과대학 대전치과병원 치과보철과) ;
  • 장우형 (전남대학교 치의학전문대학원 보철학교실) ;
  • 박찬 (전남대학교 치의학전문대학원 보철학교실) ;
  • 임현필 (전남대학교 치의학전문대학원 보철학교실)
  • Received : 2022.03.11
  • Accepted : 2022.03.14
  • Published : 2022.03.31

Abstract

Purpose: This study aimed to evaluate the color stability and antibacterial properties of the surface of polyethyl methacrylate (PEMA) resin with zirconia nanoparticles added. Materials and Methods: The control group was pure PEMA resin, and the experiment group was PEMA resin 15 mm in diameter and 2.5 mm in thickness disk-shaped specimens with 2, 4 and 8 w/v% of zirconia nanoparticles added, which were respectively divided into Group Z2, Group Z4, and Group Z8. After analyzing the surface roughness and color stability of the specimens, their antibacterial properties were evaluated using Porphyromonas gingivalis (P. gingivalis). The Statistical analysis was performed using when normality was met in the Shapiro-Wilk test, one-way ANOVA was used to test parameters, and Tukey's test was used as a post hoc test. When normality was not met, the Kruskal-Wallis test, a non-parametric test was used (P < 0.05). Results: The surface roughness measurement found that there was no significant difference between the experimental and control groups. The color stability evaluation showed that the Z2, Z4, and Z8 groups were within the color range of natural teeth. The adhesion of P. gingivalis was evaluated to be significantly reduced in Group Z2 compared to the control group (P < 0.05). In the Z2 group, Z4 group, and Z8 group, dead cells bacteria than the control group were observed. Conclusion: In conclusion, PEMA resin with zirconia nanoparticles added was within the range of natural teeth in color and reduced the adhesion of P. gingivalis.

목적: 이 연구의 목적은 지르코니아 나노입자 첨가된 PEMA (Polyethyl Methacrylate)레진 표면의 색안정성 및 항균평가 하는 것이다. 연구 재료 및 방법: PEMA 레진의 모노머에 지르코니아 나노입자를 각각 2, 4, 8 w/v%을 첨가하여 교반기를 이용하여 2시간 동안 교반하였다. 각각의 용액에 폴리머를 혼합하여 직경 15 mm, 두께 2 mm의 디스크 형태의 시편을 제작하였다. 대조군은 PEMA 레진, 실험군은 2, 4, 8 w/v% 첨가한 지르코니아 나노입자를 Z2군, Z4군, Z8군으로 나누었다. 시편의 표면거칠기 및 색안정성을 분석한 후, Porphyromonas gingivalis (P. gingivalis)를 이용하여 항균평가 하였다. 통계 분석은 Shapiro-Wilk normality test에서 정규성을 만족하는 경우 일원분산분석으로 통계 분석하였으며 사후검정으로는 Tukey test을 이용하였고(P < 0.05), 정규성을 만족하지 못하는 경우 비모수 검정인 Kruskal Wallis test를 시행하였다(P < 0.05). 결과: 표면거칠기 측정결과, Z2군, Z4군, Z8군은 대조군과 비교하여 유의한 차이가 없었다. 색안정성 평가결과, Z2군, Z4군, Z8군은 자연치아의 색상 범위 내에 있었다. Z2군은 대조군과 비교하여 P. gingivalis 부착이 유의하게 감소하였다(P < 0.05). Z2군, Z4군, Z8군은 사멸된 박테리아가 대조군보다 더 많이 관찰되었다. 결론: 지르코니아 나노입자가 첨가된 PEMA 레진의 색상은 자연치아 범위 내에 있으며, P. gingivalis의 부착을 감소시킨다.

Keywords

References

  1. An S, Evans JL, Hamlet S, Love RM. Incorporation of antimicrobial agents in denture base resin: A systematic review. J Prosthet Dent 2021;126:188-95. https://doi.org/10.1016/j.prosdent.2020.03.033
  2. Jubhari EH, Machmud E, Hasminar H, Arafi A, Kristianti CA, Arpa S, Amiruddin M. The effect of fabrication techniques of temporary crowns on the gingiva health. J Dentomaxillofac Sci 2019;4:133-6. https://doi.org/10.15562/jdmfs.v0i0.853
  3. Laine MA. Effect of pregnancy on periodontal and dental health. Acta Odontol Scand 2002;60:257-64. https://doi.org/10.1080/00016350260248210
  4. Makvandi P, Gu JT, Zare EN, Ashtari B, Moeini A, Tay FR, Niu LN. Polymeric and inorganic nanoscopical antimicrobial fillers in dentistry. Acta Biomater 2020;101:69-101. https://doi.org/10.1016/j.actbio.2019.09.025
  5. Kamer AR, Craig RG, Niederman R, Fortea J, de Leon MJ. Periodontal disease as a possible cause for Alzheimer's disease. Periodontol 2000 2020;83:242-71. https://doi.org/10.1111/prd.12327
  6. Jentsch H, Sievert Y, Gocke R. Lactoferrin and other markers from gingival crevicular fluid and saliva before and after periodontal treatment. J Clin Periodontol 2004;31:511-4. https://doi.org/10.1111/j.1600-051X.2004.00512.x
  7. Jang W, Kook GS, Kang JH, Kim Y, Yun Y, Lee SK, Park SW, Lim HP, Yun KD, Park C. Effect of washing condition on the fracture strength, and the degree of conversion of 3D printing resin. Appl Sci 2021;11:11676. https://doi.org/10.3390/app112411676
  8. Lim JH, Lee JI. Comparative study of flexural strength of temporary restorative resin according to surface polishing and fabrication methods. J Dent Rehabil Appl Sci 2021;37:16-22. https://doi.org/10.14368/jdras.2021.37.1.16
  9. Kim MS, Kim WG, Kang W. Evaluation of the accuracy of provisional restorative resins fabricated using dental 3D printers. J Korean Soc Dent Hyg 2019;19:1089-97.
  10. Kang W, Lee HK. A study of three-dimensional evaluation of the accuracy of resin provisional restorations fabricated with the DLP printer. J Tech Dent 2020;42:35-41. https://doi.org/10.14347/kadt.2020.42.1.35
  11. Gowri S, Gandhi RR, Sundrarajan M. Structural, optical, antibacterial and antifungal properties of zirconia nanoparticles by biobased protocol. J Mater Sci Technol 2014;30:782-90. https://doi.org/10.1016/j.jmst.2014.03.002
  12. Rahman H. A. The effect of addition nano particle ZrO2 on some properties of autoclave processed heat cure acrylic denture base material J Bagh Coll Dent 2015;27:32-39.
  13. Mallineni SK, Nuvvula S, Matinlinna JP, Yiu CK, King NM. Biocompatibility of various dental materials in contemporary dentistry: a narrative insight. J Investig Clin Dent, 2013;4:9-19. https://doi.org/10.1111/j.2041-1626.2012.00140.x
  14. Seabra AB, Duran N. Nanotoxicology of metal oxide nanoparticles. Metals 2015;5:934-75. https://doi.org/10.3390/met5020934
  15. Cales B. Colored zirconia ceramics for dental application. Bioceramics 1998;11:591-4.
  16. Ardlin BI. Transformation-toughened zirconia for dental inlays, crowns and bridges: chemical stability and effect of low-temperature aging on flexural strength and surface structure. Dent Mater 2002;18:590-5. https://doi.org/10.1016/S0109-5641(01)00095-1
  17. Zafar MS, Sultan ZK, Najeeb S, Shahab S, Rehman I. Therapeutic applications of nanotechnology in dentistry. In: Andronescu E, Grumezescu A, editors. Nanostructures for oral medicine. 1st ed. Amsterdam; Elsevier; 2017. p. 833-62.
  18. Eduok U, Szpunar J, Ebenso E. Synthesis and characterization of anticorrosion zirconia/acrylic nanocomposite resin coatings for steel. Progress in Organic Coatings 2019;137:105337. https://doi.org/10.1016/j.porgcoat.2019.105337
  19. Gad MM, Fouda SM, Al-Harbi FA, Napankangas R, Raustia A. PMMA denture base material enhancement: a review of fiber, filler, and nanofiller addition. Int J Nanomedicine 2017;12:3801-12. https://doi.org/10.2147/IJN.S130722
  20. Gad MM, Al-Thobity AM, Shahin SY, Alsaqer BT, Ali AA. Inhibitory effect of zirconium oxide nanoparticles on Candida albicans adhesion to repaired polymethyl methacrylate denture bases and interim removable prostheses: a new approach for denture stomatitis prevention. Int J Nanomedicine 2017;12:5409-19. https://doi.org/10.2147/IJN.S142857
  21. Holt SC, Ebersole JL. Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia: the 'red complex', a prototype polybacterial pathogenic consortium in periodontitis. Periodontol 2000 2005;38:72-122. https://doi.org/10.1111/j.1600-0757.2005.00113.x
  22. Slots J, Ting M. Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis in human periodontal disease: occurrence and treatment. Periodontol 2000 1999;20:82-121. https://doi.org/10.1111/j.1600-0757.1999.tb00159.x
  23. Yuan JC, Brewer JD, Monaco EJ Jr, Davis EL. Defining a natural tooth color space based on a 3-dimensional shade system. J Prosthet Dent 2007;98:110-9. https://doi.org/10.1016/S0022-3913(07)60044-4
  24. Covacci V, Bruzzese N, Maccauro G, Andreassi C, Ricci GA, Piconi C, Marmo E, Burger W, Cittadini A. In vitro evaluation of the mutagenic and carcinogenic power of high purity zirconia ceramic. Biomaterials 1999;20:371-6. https://doi.org/10.1016/S0142-9612(98)00182-3
  25. Hannink RH, Kelly PM, Muddle BC. Transformation toughening in zirconia-containing ceramics. J Am Ceram Soc 2000;83:461-87. https://doi.org/10.1111/j.1151-2916.2000.tb01221.x
  26. Scarano A, Di Carlo F, Quaranta M, Piattelli A. Bone response to zirconia ceramic implants: an experimental study in rabbits. J Oral Implantol 2003;29:8-12. https://doi.org/10.1563/1548-1336(2003)029<0008:BRTZCI>2.3.CO;2
  27. Quirynen M, Bollen CM. The influence of surface roughness and surface-free energy on supra-and subgingival plaque formation in man: A review of the literature. J Clin Periodontol 1995;22:1-14. https://doi.org/10.1111/j.1600-051X.1995.tb01765.x
  28. Al-Radha ASD, Dymock D, Younes C, O'Sullivan D. Surface properties of titanium and zirconia dental implant materials and their effect on bacterial adhesion. J Dent 2012;40:146-53. https://doi.org/10.1016/j.jdent.2011.12.006
  29. Wyszecki G. Technical notes: Recent agreements reached by the colorimetry committee of the commission internationale de l'eclairage. J Opt Soc Am 1968;58:290-2. https://doi.org/10.1364/JOSA.58.000290
  30. Yilmaz C, Korkmaz T, Demirkoprulu H, Ergun G, Ozkan Y. Color stability of glazed and polished dental porcelains. J Prosthodont 2008;17:20-4. https://doi.org/10.1111/j.1532-849X.2007.00237.x
  31. Kumaresan M, Anand KV, Govindaraju K, Tamilselvan S, Kumar VG. Seaweed Sargassum wightii mediated preparation of zirconia nanoparticles and their antibacterial activity against gram positive and gram negative bacteria. Microb Pathog 2018;124:311-5. https://doi.org/10.1016/j.micpath.2018.08.060
  32. Gad MM, Abualsaud R, Rahoma A, Al-Thobity AM, Akhtar S, Fouda SM. Double-layered acrylic resin denture base with nanoparticle additions: An in vitro study. J Prosthet Dent 2022;127:174-83. https://doi.org/10.1016/j.prosdent.2020.08.021
  33. Qurynen M, Bollen CM. The influence of surface roughness and surface free-energy on supra- and subgingival plaque formation in man. A review of the literature. J Clin Periodontol 1995;22:1-14. https://doi.org/10.1111/j.1600-051X.1995.tb01765.x
  34. Alp G, Johnston WM, Yilmaz B. Optical properties and surface roughness of prepolymerized poly(methyl methacrylate) denture base materials. J Prosthet Dent 2019;121:347-52. https://doi.org/10.1016/j.prosdent.2018.03.001
  35. Flemming HC, Wingender J. Relevance of microbial extracellular polymeric substances (EPSs)-Part I: Structural and ecological aspects. Water Sci Technol 2001;43:1-8. https://doi.org/10.2166/wst.2001.0326
  36. Gad MM, Abualsaud R, Rahoma A, Al-Thobity AM, Al-Abidi KS, Akhtar S. Effect of zirconium oxide nanoparticles addition on the optical and tensile properties of polymethyl methacrylate denture base material. Int J Nanomedicine 2018;13:283-92. https://doi.org/10.2147/IJN.S152571