DOI QR코드

DOI QR Code

Experimental Study of Droplet Characteristics Related to Electrospray Mode

정전분무모드에 관한 액적특성의 실험적 연구

  • 김지엽 (경북대학교 기계공학과) ;
  • 이도현 (경북대학교 기계공학과) ;
  • 조주형 (경북대학교 기계공학과) ;
  • 홍정구 (경북대학교 기계공학과)
  • Received : 2022.02.21
  • Accepted : 2022.03.14
  • Published : 2022.03.31

Abstract

Electrospray is a method of atomizing fluid using high voltage supply and capable of generating continuous flow and coherent size of droplets. Electrical system and properties of fluids has enabled electrospray to have various spray modes. However, its studies have been confined only in Cone jet, which is more stable and easier to manipulate droplets' size than other spraying modes. Therefore, it is necessary to investigate and compare other spraying modes based on experimental parameters and physical properties of fluids. This research paper identified nine different spray modes. It was found out that Sauter Mean Diameter (SMD) is proportional to flow rate of fluids and maximum difference among spray modes was 1.7 times. On the other hand, SMD standard deviation had low variations on specific flow rates of fluids. Pulsed jet mode recorded the largest SMD standard deviation, while Spindle recorded the lowest.

Keywords

Acknowledgement

본 연구는 산업통상자원부의 재원으로 한국에너지기술평가원(KETEP)의 지원을 받아 수행한 연구과제입니다(No. 20204010600060).

References

  1. S. Y. Lee, Atomization and Spray, Minumsa, 1996.
  2. M. Y. Elizabeth, S. Niya, J. R. Steven, M. H. Gary and A. B. Lane, "Electrospray Ionization from Nanopipette Emitters with Tip Diameters of Less than 100 nm", Analytical Chemistry, Vol. 85, No. 18, 2013, pp. 8498~8502. https://doi.org/10.1021/ac402214g
  3. J. H. Chung, H. B. Lee and J. H. Kim, "Electrohydrodynamic Assembly of Nanoparticles for Nanoengineered Biosensors", Multiscale Simulations and Mechanics of Biological Materials, 2013, pp. 193~206.
  4. S. N. Jayasinghe and N. A. Townsend, "Bio-electrosprays: the next generation of electrified jets", Biotechnology Journal, Vol. 1, 2006, pp. 1018~1022. https://doi.org/10.1002/biot.200600128
  5. W. K. Liu, E. G. Karpov and H. S. Park, "Nano mechanics and materials: theory, multiscale methods and applications", John Wiley and Sons, 2006.
  6. O. V. Salata, "Tools of Nanotechnolohy: Electrospray", Current Nanoscience, Vol. 1, 2005, pp. 25~33. https://doi.org/10.2174/1573413052953192
  7. G. G. Masr, A. J. Yule and L. Bending, "Industrial sprays and atomization: design, analysis and applications", Springer, 2002.
  8. I. B. Rietveld, K. Kobayashi, H. Yamada and K. Matsushige, "Electrospray deposition model, and experiment: Toward generalcontrol of film morphology", Journal of Physical Chemistry B, Vol. 110, No. 46, 2006, pp. 23351~23364. https://doi.org/10.1021/jp064147+
  9. S. Basak, D. R. Chen and P. Biswas, "Electrospray of ionic precursor solution to synthesize iron oxide nanoparticles:modified scalling law", Chemical Engineering Science, Vol. 62, No. 4, 2007, pp. 1263~1268. https://doi.org/10.1016/j.ces.2006.11.029
  10. K. Rahman, K. Alli, N. M. Muhammad, M. T. Hyun and K. H. Choi, "Fine resolution drop-on-demand electrohydrodynamic patterning of conductive silver tracks on glass substrate", Appled Physics A, Vol. 111, No. 2, 2013, pp. 593~600. https://doi.org/10.1007/s00339-012-7267-x
  11. J. W. Kim, N. Duraisamy, T. M Lee, I. K. Kim and K. H. Choi, "Hybrid electrohydrodynamic atomization of nanostructured silver top contact for inverted organic solar cells", Solar Energy Materials and Solar Cells, Vol. 130, 2014, pp. 156~162. https://doi.org/10.1016/j.solmat.2014.06.034
  12. C. J. Hogan. Jr, J. A. Carroll, H. W. Rohrs, P. Biswas and M. L. Gross, "Combined Charged Residue-Field Emission Model of Macromolecular Electrospray Ionization", Analytical Chemistry, Vol. 81, No. 1, 2009, pp. 369~377. https://doi.org/10.1021/ac8016532
  13. L. Chen, C. Ru, H. Zhang, Y. Zhang, Z. Chi, H. Wang and G. Li, "Assembling Hybrid Energetic Materials with Controllable Interfacial Microstructures by Electrospray", ACS Omega, Vol. 6, 2021, pp. 16816~16825. https://doi.org/10.1021/acsomega.1c01371
  14. A. Jaworek and A. Krupa, "Generation and characteristics of the precession mode of EHD spraying" , Journal of Aerosol Science, Vol. 27, No. 1, 1996, pp. 75~82. https://doi.org/10.1016/0021-8502(95)00528-5
  15. Y. Laoonual, "Optical investigation of evaporating spray", PhD Thesis, Imperial College London, 2006.
  16. B. Ratna, M. Hiroyuki, O. Takashi, K. Makoto and B. Li, "Enhanced Aerosol Particle Filtration Efficiency of Nonwoven Porous Cellulose Triacetate Nanofiber Mats", ACS Omega, Vol. 3, No. 7, 2018, pp. 8271~8277. https://doi.org/10.1021/acsomega.8b00695
  17. L. Tang and P. Kebarle, "Effect of the conductivity of the electrosprayed solution on the electrospray current. Factors determing analyte sensitivity in electrospray mass spectrometry", Analytical Chemistry, Vol. 63, 1991, pp. 2709~2715. https://doi.org/10.1021/ac00023a009
  18. C. O. Eduardo, K. Aravinda and K. Ranganathan, "Non-dimensional groups for electrospray modes of highly conductive and viscous nanoparticle suspensions", Scientific Report, Vol. 10, 2020, 4405. https://doi.org/10.1038/s41598-020-61323-5
  19. C. O. Eduardo, K. Aravinda and K. Ranganathan, "Electrospray mode transition of microdroplets with semiconductor nanoparticle suspension", Scientific Report, Vol. 7, 2017, 5144. https://doi.org/10.1038/s41598-017-05175-6
  20. J. R. Liompart, J. Grifoll and I. G. Loscetales, "Electrosprays in the cone-jet mode: From Taylor cone formation to spray development", Journal of Aerosol Science, Vol. 125, 2018, pp. 2~31. https://doi.org/10.1016/j.jaerosci.2018.04.008
  21. E. S. Chong, G. Byung. Hwang, K. T. Kim, I. S. Lee, S. H. Hand, H. J. Kim, H. H. Jung, S. J. Kim, H. I. Jung and B. U. Lee, "Viable Bacterial Cell Patterning Using a Pulsed Jet Electrospray System", Journal of Microbiology and Biotechnology, Vol. 25, No. 3, 2015, pp. 381~385. https://doi.org/10.4014/jmb.1401.01012
  22. C. N. Ryan, K. L. Smith and J. P. W. Stark, "Characterization of multi-jet electrospray systems", Journal of Aerosol Science, Vol. 51, 2012, pp. 35~48. https://doi.org/10.1016/j.jaerosci.2012.03.007
  23. M. Cloupeau and B. Prunet-Foch, "Electrohydrodynamic Spraying Functioning Modes: A Critical Review", Journal of Aerosol Science, Vol. 25, No. 6, pp. 1021~1036, 1994. https://doi.org/10.1016/0021-8502(94)90199-6
  24. M. Gamero-Castano and V. Hruby, "Electrospray as a Source of Nanoparticles for Efficient Colloid Thrusters", Journal of Propulsion and Power, Vol. 17, 2001, pp. 977~987. https://doi.org/10.2514/2.5858
  25. Y. Wu, J. A. Mackay, J. R. McDaniel, A. Chilkoti and R. L. Clark, "Fabricaion of elastin like polypeptide nanoparticles for drung deliverly by electrospraying", Biomacromolecules, Vol. 10, 2008, pp. 19~24. https://doi.org/10.1021/bm801033f
  26. H. C. Kim, J. H. Kim, H. J. Yang, J. S. Suh, T. Y. Kim, B. W. Han, S. W. Kim, D. S. Kim, V. P. Peter and M. S. Choi, "Parallel patterning of nanoparticles via electrodynamic focusing of charged aerosols", Nature Nanotechnology, Vol. 1, 2006, pp. 117~121. https://doi.org/10.1038/nnano.2006.94
  27. K. Wang and J. P. Stark, "Direct fabrication of electrically functional microstructures by fully voltage-controlled electrohydrodynamic jet printing of silver nonoink", Applied Physics A, Vol. 99, No.4, 2010, pp. 763~766. https://doi.org/10.1007/s00339-010-5701-5
  28. B. K. Ku and S. S. K, "Electrospray characteristics of highly viscous liquids", Journal of Aerosol Science, Vol. 33, No. 10, 2002, pp. 1361~1378. https://doi.org/10.1016/S0021-8502(02)00075-7
  29. F. Sultan, N. Ashgriz, D. R. Guildenbecher and P. E. Sojka, "Handbook of Atomization and sprays", Springer, 2011, pp. 727~753.
  30. N. T. Le, J. M. Myrick, T. Seigle, P. T. Huynh and S. Krishnan, "Mapping electrospray modes and droplet size distributions for chitosan solutions in unentangled and entangled concentration regimes", Advanced Powder Technology, Vol. 29, No. 12, 2018, pp. 3007~3021. https://doi.org/10.1016/j.apt.2018.10.006
  31. A. Hollerbach, D. Logsdon, K. Iyer, A. Li, J. A. Schaberb and R. G. Cooks, "Sizing sub-diffraction limit electro-sprayed droplets by structured illumination microscopy", Analyst, Vol. 143, 2018, pp. 232~240. https://doi.org/10.1039/c7an01278k
  32. S. N. Jayasinghe and M. J. Edirisinghe, "Effect of Viscosity on the size of relics produced by electrostatic atomization", Journal of Aerosol Science, Vol. 33, No. 10, 2002, pp. 1379~1388. https://doi.org/10.1016/S0021-8502(02)00088-5
  33. J. Y. Kim, S. J. Lee, G. Y. Baik and J. G. Hong, "Effects of Working Fluids on Spray Modes and Atomization Characteristics in Electrospray", Journal of the Korean Society for Precision Engineering, Vol. 38, No. 1, 2021, pp. 61~68. https://doi.org/10.7736/JKSPE.020.100
  34. K. W. Ku, J. G. Hong and C. W. Park, "Effect of Assist-air of Twin Fluid Atomizer on Urea Thermal Decomposition", Atomization Sprays, Vol. 25, 2015, pp. 895~915. https://doi.org/10.1615/AtomizSpr.2015011919
  35. K. W. Ku and J. G. Hong, "Thermo Fluid Effect of the Urea Thermal Decomposition in a Lab-scaled Reactor", Chemical Engineering Journal, Vol. 264, 2015, pp. 625~632. https://doi.org/10.1016/j.cej.2014.11.103
  36. K. Tang and A. Gomez, "Monodisperse Electrosprays of Low Electric Conductivity Liquids in the Cone-Jet Mode", Journal of Colloid and Interface Science, Vol. 184, 1996, pp. 500~511. https://doi.org/10.1006/jcis.1996.0645