DOI QR코드

DOI QR Code

산업적 응용을 위한 Lipoxygenase 생산 세균의 분리 및 특성

Isolation and Characterization of Lipoxygenase-producing Bacteria for Industrial Applications

  • 김예린 (부산대학교 생명환경화학과 및 생명산업융합연구원) ;
  • 박규림 (부산대학교 생명환경화학과 및 생명산업융합연구원) ;
  • 김예담 (부산대학교 생명환경화학과 및 생명산업융합연구원) ;
  • 이오미 (농림축산검역본부 조류세균과) ;
  • 손홍주 (부산대학교 생명환경화학과 및 생명산업융합연구원)
  • Kim, Yerin (Department of Life Science and Environmental Biochemistry, Life and Industry Convergence Institute, Pusan National University) ;
  • Park, Gyulim (Department of Life Science and Environmental Biochemistry, Life and Industry Convergence Institute, Pusan National University) ;
  • Kim, Yedam (Department of Life Science and Environmental Biochemistry, Life and Industry Convergence Institute, Pusan National University) ;
  • Lee, O-Mi (Avian Disease Division, Animal and Plant Quarantine Agency) ;
  • Son, Hong-Joo (Department of Life Science and Environmental Biochemistry, Life and Industry Convergence Institute, Pusan National University)
  • 투고 : 2022.02.14
  • 심사 : 2022.03.07
  • 발행 : 2022.03.31

초록

Lipoxygenase is an enzyme, mainly produced by plants, capable of converting unsaturated fatty acids to fatty acids. It has vast application potential in the food, pharmaceutical and agricultural industries. The aim of this study was to isolate novel lipoxygenase-producing bacteria from the environment and to investigate the lipoxygenase enzymatic properties for industrial production. The strain, NC1, isolated from cultivation soils, was identified as Bacillus subtilis based on the phenotypic characteristics and 16S rRNA gene sequencing. This strain formed a pink color around the colony when cultured on indamine dye formation plates. The production of lipoxygenase by B. subtilis NC1 was influenced by the composition of the medium and linoleic acid concentrations. The optimum temperature and pH for lipoxygenase activity was determined to be 40 ℃ and pH 6, respectively. The enzyme showed relatively high stability at temperatures ranging from 20-50 ℃ and acid-neutral regions. In addition, the lipoxygenase produced by B. subtilis NC1 was able to degrade commercially available oils including sunflower seed oil and Perilla oil. In this study, a useful indigenous bacterium was isolated, and the fundamental physicochemical data of bacterial lipoxygenase giving it industrial potential are presented.

키워드

과제정보

이 논문은 부산대학교 기본연구지원사업(2년)에 의하여 연구되었음.

참고문헌

  1. Anthon, G. E., Barrett, D. M., 2001, Colorimetric method for the determination of lipoxygenase activity, J. Agric. Food Chem., 49, 32-37. https://doi.org/10.1021/jf000871s
  2. Bae, J. H., Hou, C. T., Kim, H. R., 2010, Thermostable lipoxygenase is a key enzyme in the conversion of linoleic acid to trihydroxy-octadecenoic acid by Pseudomonas aeruginosa PR3, Biotechnol. Bioprocess Eng., 15, 1022-1030. https://doi.org/10.1007/s12257-010-0273-y
  3. Balas, L., Durand, T., 2016, Dihydroxylated E,E,Z-docosatrienes. An overview of their synthesis and biological significance, Prog. Lipid Res., 61, 1-18. https://doi.org/10.1016/j.plipres.2015.10.002
  4. Barrow, G. I., Felthanm, R. K. A., 1993, Cowan and Steel's manual for the identification of medical bacteria, Cambridge University Press, New York.
  5. Baysal, T., Demirdoven, A., 2007, Lipoxygenase in fruits and vegetables: A review, Enzyme Microb. Technol., 40, 491-496. https://doi.org/10.1016/j.enzmictec.2006.11.025
  6. Brash, A. R., 1999, Lipoxygenases: occurrence, functions, catalysis, and acquisition of substrate, J. Biol. Chem., 274, 23679-23682. https://doi.org/10.1074/jbc.274.34.23679
  7. Busquets, M., Deroncele, V., Vidal-Mas, J., Rodriguez, E., Guerrero, A., Manresa, A., 2004, Isolation and characterization of a lipoxygenase from Pseudomonas 42A2 responsible for the biotransformation of oleic acid into (S)-(E)-10-hydroxy-8-octadecenoic acid, Antonie van Leeuwenhoek 85, 129-139. https://doi.org/10.1023/B:ANTO.0000020152.15440.65
  8. Cai, Y., Xu, H., Xia, Y., Fang, Y., 2010, Application of linoleic acid hydroperoxide as a mild and green bleaching agent, AIChE SpringMeeting & 6th Global Congress on Process Safety, Conference Proceedings, San Antonio, TX, United States, Mar. 21-25, (1), cail/1-8.
  9. Casillas-Vargas, G., Ocasio-Malave, C., Medina, S., Morales-Guzman, C., Valle, R. G. D., Carballeira, N. M., Sanabria-Rios, D. J., 2021, Antibacterial fatty acids: An update of possible mechanisms of action and implications in the development of the next-generation of antibacterial agents, Prog. Lipid Res., 82, 101093-101102. https://doi.org/10.1016/j.plipres.2021.101093
  10. Conte, L., Macri, F., Vianello, A., 2010, Lipoxygenase and hydroperoxide lyase activities in two olive varieties from Northern Italy, Eur. J. Lipid Sci. Technol., 112, 780-790. https://doi.org/10.1002/ejlt.200900167
  11. Fukushige, H., Hildebrand, D., 2005, A Simple and efficient system for green note compound biogenesis by use of certain lipoxygenases and hydroperoxide lyase sources, J. Agric. Food Chem., 53, 6877-6882. https://doi.org/10.1021/jf047954j
  12. Gounaris, Y., 2010, Biotechnology for the production of essential oils, flavours and volatile isolates, A review, Flavour Frag. J., 25, 367-386. https://doi.org/10.1002/ffj.1996
  13. Hansen, J., Garreta, A., Benincasa, M., Fuste, M. C., Busquets, M., Manresa, A., 2013, Bacterial lipoxygenases, a new subfamily of enzymes? A phylogenetic approach, Appl. Microbiol. Biotechnol., 97, 4737-4747. https://doi.org/10.1007/s00253-013-4887-9
  14. Heshof, R., de Graaff, L. H., Villaverde, J. J., Silvestre, A. J. D., Haarmann, T., Dalsgaard, T. K., Buchert, J., 2016, Industrial potential of lipoxygenases, Crit. Rev. Biotechnol., 36, 665-674. https://doi.org/10.3109/07388551.2015.1004520
  15. Holt, J. G., Krieg, N. R., Sneath, P. H. A., Staley, J. T., Williams, S. T., 1994, Bergey's Manual of Determinative Bacteriology, The Williams and Wilkins Co., Baltimore.
  16. Horn, M. E., Woodard, S. L., Howard, J. A., 2004, Plant molecular farming: systems and products, Plant Cell Rep., 22, 711-720. https://doi.org/10.1007/s00299-004-0767-1
  17. Kaur, J., Kaur, H., 2015, Advantages and effectiveness of bacterial culture in medical laboratories, Int. J. Adv. Res., 3, 1028-1039.
  18. Kusaka, T., Ikeda, M., 1993, Liquid chromatography-mass spectrometry of fatty acids including hydroxy and hydroperoxy acids as their 3-methyl-7-methoxy-1,4-benzoxazin-2-one derivatives, J. Chromatogaphy 639, 165-173. https://doi.org/10.1016/0021-9673(93)80251-3
  19. Lane, D. J., 1991, 16S/23S rRNA sequencing, in: E. Stackebrandt and M. Goodfellow (eds.), Nucleic acid techniques in bacterial systematics, John Wiley and Sons, New York, 115-175.
  20. Liavonchanka, A., Feussner, I., 2006, Lipoxygenases: occurrence, functions and catalysis, J. Plant Physiol., 163, 348-357. https://doi.org/10.1016/j.jplph.2005.11.006
  21. Nguyen, D,, Zhang, X., Paice, M., Tsang, A., Renaud, S., 2007, Microplate enzyme assay for screening lipoxygenases to degrade wood extractives, Biocatal. Biotransform., 25, 202-210. https://doi.org/10.1080/10242420701379783
  22. Nyyssola, A., Heshof, R., Haarmann, T., Eidner, J., Westerholm-Parvinen, A., Langfelder, K., Kruus, K., de Graaff, L., Buchert, J., 2012, Methods for identifying lipoxygenase producing microorganisms on agar plates, AMB Express 2, 17-23. https://doi.org/10.1186/2191-0855-2-17
  23. Porta, H., Rocha-Sosa, M., 2002, Plant lipoxygenases. Physiological and molecular features, Plant Physiol., 130, 15-21. https://doi.org/10.1104/pp.010787
  24. Recchiut, A., 2013, Resolvin D1 and its GPCRs in resolution circuits of inflammation, Prostaglandins Other Lipid Mediat., 107, 64-76. https://doi.org/10.1016/j.prostaglandins.2013.02.004
  25. Santano, E., Pinto, M., Macias, P., 2002, Chlorpromazine oxidation by hydroperoxidase activity of covalent immobilized lipoxygenase, Biotechnol. Appl. Biochem., 36, 95-100. https://doi.org/10.1042/BA20020017
  26. Siedow, J. N., 1991, Plant lipoxygenase: structure and function, Annu. Rev. Plant Phvsiol. Plant Mol. Biol., 42, 145-188. https://doi.org/10.1146/annurev.pp.42.060191.001045
  27. Son, B. Y., Lee, Y. H., Lee, S. H., 2006, Change of lipoxygenase activity during seed germination in soybean, Kor. J. Crop Sci., 51, 209-214.
  28. Vance, R. E., Hong, S., Gronert, K., Serhan, C. N., Mekalanos, J. J., 2004, The opportunistic pathogen Pseudomonas aeruginosa carries a secretable arachidonate 15-lipoxygenase, Proc. Natl. Acad. Sci. U.S.A., 101, 2135-2139. https://doi.org/10.1073/pnas.0307308101
  29. Wolf, W. J., 1975, Lipoxygenase and flavor of soybean protein product, J. Agric. Food Chem., 23, 136-141. https://doi.org/10.1021/jf60198a013
  30. Zheng, C. J., Yoo, J. S., Lee, T. G., Cho, H. Y., Kim, Y. H., Kim, W. G., 2005, Fatty acid synthesis is a target for antibacterial activity of unsaturated fatty acids, FEBS Lett., 579, 5157-5162. https://doi.org/10.1016/j.febslet.2005.08.028