DOI QR코드

DOI QR Code

Physicochemical characteristics and antioxidant activity of kimchi during fermentation

발효 단계별 김치의 이화학적 특성 및 항산화 활성

  • Ji Myung, Choi (Department of Food and Nutrition, Kyungsung University) ;
  • Eun Ju, Cho (Department of Food Science and Nutrition, Pusan National University) ;
  • Hyun Young, Kim (Department of Food Science and Nutrition, Gyeongsang National University) ;
  • Ah Young, Lee (Department of Food Science and Nutrition, Gyeongsang National University) ;
  • Jine Shang, Choi (Department of Food Science and Technology, Gyeongsang National University)
  • Received : 2022.10.25
  • Accepted : 2022.11.01
  • Published : 2022.12.31

Abstract

In the present study, we investigated the physicochemical characteristics and antioxidant activity of kimchi during the fermentation process. Kimchi was fermented at 18.5 ℃, then after one day, the storage temperature was changed to 5 ℃ without fresh kimchi (Fresh; pH 5.6, total acidity 0.3%), which obtained optimum-ripened kimchi (OptR; pH 4.3, total acidity 0.64%), and over-ripened kimchi (OvR; pH 3.8, total acidity 1.24%). As a result, the glucosinolates content of the kimchi was increased during the fermentation process. Among the glucosinolates, glucoraphanin possesses the highest amounts in kimchi. In addition, the contents of sulforaphane and total polyphenol, which are common antioxidant compounds, were increased during the fermentation process. To evaluate the antioxidant activities of Fresh, OptR, and OvR, we measured 1,1-diphenyl-2-picrylhydrazyl (DPPH) and hydroxyl (·OH) radicals radical scavenging activity in vitro. Fresh, OptR, and OvR exerted DPPH and ·OH radical scavenging activities dose-dependently. In particular, the ·OH radical scavenging activities of OptR and OvR were higher than that of Fresh. Therefore, we suggest that kimchi at the ripe and over-ripe stage is considered to have high antioxidant activity by increasing glucosinolate, sulforaphane, and total polyphenols, compared with fresh kimchi.

본 연구는 생김치, 적숙기 및 과숙기 상태의 세 가지 발효단계별 김치의 이화학적 특성과 항산화 활성에 대해 알아보았다. pH 및 산도 측정을 통해 생김치(pH 5.6, 산도 0.3%), 적숙기 김치(pH 4.3, 산도 0.64%), 과숙기 김치(pH 3.7, 산도 1.24%)를 시료로 사용하였다. 발효가 진행될수록 glucosinolate의 함량이 증가하였으며, 특히 생김치, 적숙기 김치, 과숙기 김치의 glucoraphanin 함량이 가장 높았다. 뿐만 아니라, 발효가 진행되면서 항산화 물질로 알려진 glucoraphanin, sulforaphane, 및 총 폴리페놀 함량이 증가하였다. 발효단계별 김치 시료의 항산화 활성을 측정한 결과, 100, 250, 500 ㎍/mL의 농도에서 생김치에 비해 적숙기와 과숙기 김치의 DPPH radical 소거능이 우수하게 나타났으며, ·OH radical 소거능을 측정하였을 때 모든 농도(100, 250, 500, 1000 ㎍/mL)에서 적숙기와 과숙기 김치가 생김치에 비해 우수한 소거능을 나타낸 것으로 보아 김치의 발효가 진행될수록 radical 소거능이 증가함을 알 수 있었다. 이는 생김치에 비해 발효과정을 거친 적숙기 및 과숙기 김치가 glucosinolate, sulforaphane, 총 폴리페놀 함량이 증가하여 항산화 활성이 높게 나타난 것으로 사료된다.

Keywords

References

  1. Lee HY, Paik JE, Han YS (2003) Effect of powder-type dried Alaska pollack addition on the quality of Kimchi. Korean J Soc Food Cookery Sci 19: 254-262 
  2. Hwang ES (2010) Changes in myrosinase activity and total glucosinolate levels in Korean Chinese cabbages by salting conditions. Korean J Food Cook Sci 26: 104-109 
  3. Liang H, Yuan QP, Dong HR, Liu YM (2006) Determination of sulforaphane in broccoli and cabbage by high-performance liquid chromatography. J Food Compos Anal 19: 473-476. doi: 10.1016/j.jfca.2005.11.005 
  4. Lee KH, Cho HY, Pyun YR (1991) Kinetic modeling for the prediction of shelf-life of kimchi based on total acidity as a quality index. Korean J Food Sci Technol 23: 306-310 
  5. Kwon EA, Kim M (2009) Isolation of Hafnia species from kimchi. J Microbiol Biotechnol 19: 78-82. doi: 10.4014/jmb.0807.416 
  6. Jung KO, Kil JH, Kim KH, Park KY (2003) Effect of kimchi and its ingredients on the growth of Helicobacter pylori. Prev Nutr Food Sci 8: 149-153. doi: 10.3746/jfn.2003.8.2.149 
  7. Cheigh HS, Park KY (1994) Biochemical, microbiological, and nutritional aspects of kimchi (Korean fermented vegetable products). Crit Rev Food Sci Nutr 34: 175-203. doi: 10.1080/10408399409527656 
  8. Park KY, Jeong JK, Lee YE, Daily JW (2014) Health benefits of kimchi (Korean fermented vegetables) as a probiotic food. J Med Food 17: 6-20. doi: 10.1089/jmf.2013.3083 
  9. Park KY, Hong GH (2019) Kimchi and its functionality. J Korean Soc Food Cult 34: 142-158. doi: 10.7318/KJFC/2019.34.2.142 
  10. Choi JM, Lee S, Park KY, Kang SA, Cho EJ (2014) Protective effect of kimchi against Aβ 25-35-induced impairment of cognition and memory. J Korean Soc Food Sci Nutr 43: 360-366. doi: 10.3746/jkfn.2014.43.3.360 
  11. Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39: 44-84. doi: 10.1016/j.biocel.2006.07.001 
  12. Liguori I, Russo G, Curcio F, Bulli G, Aran L, Della-Morte D, Gargiulo G, Testa G, Cacciatore F, Bonaduce D, Abete P (2018) Oxidative stress, aging, and diseases. Clin Interv Aging 13: 757-772. doi: 10.2147/CIA.S158513 
  13. Jones DP (2008) Radical-free biology of oxidative stress. Am J Physiol Cell Physiol 295: 849-868. doi: 10.1152/ajpcell.00283.2008 
  14. Tian C, Hao L, Yi W, Ding S, Xu F (2020) Polyphenols, oxidative stress, and metabolic syndrome. Oxid Med Cell Longev 2020: 7398453 
  15. Ganesan K, Xu B (2017) Polyphenol-rich lentils and their health promoting effects. Int J Mol Sci 18: 2390. doi: 10.3390/ijms18112390 
  16. Jia Z, Anandh Babu PV, Chen W, Sun X (2018) Natural products targeting on oxidative stress and inflammation: mechanisms, therapies, and safety assessment. Oxid Med Cell Longev 2018: 6576093. doi: 10.1155/2018/6576093 
  17. Park JM, Shin JH, Gu JG, Yoon SJ, Song JC, Jeon WM, Suh HJ, Chang UJ, Yang CY, Kim JM (2011) Effect of antioxidant activity in kimchi during a short-term and over-ripening fermentation period. J Biosci Bioeng 112: 356-359. doi: 10.1016/j.jbiosc.2011.06.003 
  18. Park BH, Cho HS (2006) Physicochemical characteristics of cabbage Kimchi during fermentation. Korean J Food Cook Sci 22: 600-608 
  19. Cho EJ, Lee SM, Rhee SH, Park KY (1998) Studies on the standardization of chinese cabbage kimchi. Korean J Food Sci Technol 30: 324-232 
  20. Singleton VL, Orthofer R, Lamuela Raventos RM (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu Reagent. Methods Enzymol 299: 152-178  https://doi.org/10.1016/S0076-6879(99)99017-1
  21. Hatano T, Edamatsu R, Hiramatsu M, Mori A, Fujita Y, Yasuhara T, Yoshida T, Okuda T (1989) Effects of the interaction of tannins with coexisting substances, Effects of tannins and related polyphenols on superoxide ? anion radical, and on 1,1-diphenyl-2-picrylhydrazyl radical. Chem Pharm Bull 37: 2016-2021. doi: 10.1248/cpb.37.2016 
  22. Chung ME, Lee HJ, Woo SJ (1994) Effect of soused shrimp and cooked glutinous rice flour on the changes of low molecular nitrogen compounds content during kimchi fermentation. Korean J Dietary Culture 9: 125-130 
  23. Kim JS, Yang JW, Kang MH, Kim JY (2010) Evaluation of the quality characteristics Chinese cabbage from two geographic origins during fermentation of kimchi. J East Asian Soc Dietary Life 20: 720-726 
  24. Cho JS (1989) Chemical characteristics of kimchi. Korean J Food Sci Technol 21: 25-30 
  25. Mheen TI, Kwon TW (1984) Effect of temperature and salt concentration of Kimchi fermentation. Korean J Food Sci Technol 16: 443-450 
  26. Jeong SH, Lee SH, Jung JY, Choi EJ, Jeon CO (2013) Microbial succession and metabolite changes during long-term storage of kimchi. J Food Sci 78: 763-769. doi: 10.1111/1750-3841.12095 
  27. Park HY, Ahn JA, Seo HJ, Choi HS (2011) Quality characteristics of small package kimchi according to packing material and storage temperature. Korean J Food Cookery Sci 27: 63-73. doi: 10.9724/kfcs.2011.27.1.063 
  28. Kang SM, Yang WS, Kim YC, Joung EY, Han YG (1995) Strain improvement of Leuconostoc mesenteroides for kimchi fermentation and effect of starter. Microbiol Biotechnol Lett 23: 461-471 
  29. Kim GE (2011) Characteristics & applications of lactobacillus sp. from kimchi. KSBB J 26: 374-380. doi: 10.7841/ksbbj.2011.26.5.374 
  30. Lee CW, Ko CY, Ha DM (1992) Microfloral changes of the lactic acid bacteria during Kimchi fermentation and identification of the isolates. Kor J Appl Microbiol Biotechnol 20: 102-109 
  31. Blazevic I, Montaut S, Burcul F, Olsen CE, Burow M, Rollin P, Agerbirk N (2020) Glucosinolate structural diversity, identification, chemical synthesis and metabolism in plants. Phytochemistry 169: 112100. doi: 10.1016/j.phytochem.2019.112100 
  32. Becker TM, Juvik JA (2016) The role of glucosinolate hydrolysis products from brassica vegetable consumption in inducing antioxidant activity and reducing cancer incidence. Diseases 4: 22. doi: 10.3390/diseases4020022 
  33. Stoewsand GS (1995) Bioactive organosulfur phytochemicals in Brassica oleracea vegetables--a review. Food Chem Toxicol 33: 537-543. doi: 10.1016/0278-6915(95)00017-V 
  34. Brooks JD, Paton VG, Vidanes G (2001) Potent induction of phase 2 enzymes in human prostate cells by sulforaphane. Cancer Epidemiol Biomarkers Prev 10: 949-954 
  35. Cole R (1983) Isothiocyanates, nitriles and thiocyanates and products of autolysis of glucosinolates in Cruciferae. Phytochemistry 15: 759-762. doi: 10.1016/S0031-9422(00)94437-6 
  36. Vanduchova A, Anzenbacher P, Anzenbacherova E (2019) Isothiocyanate from broccoli, sulforaphane, and its properties. J Med Food 22: 121-126. doi: 10.1089/jmf.2018.0024 
  37. Russo M, Spagnuolo C, Russo GL, Skalicka-Wozniak K, Daglia M, Sobarzo-Sanchez E, Nabavi SF, Vabavi SM (2018) Nrf2 targeting by sulforaphane: A potential therapy for cancer treatment. Crit Rev Food Sci Nutr 58: 1391-1405. doi: 10.1080/10408398.2016.1259983 
  38. Kim BK, Choi JM, Kang SA, Park KY, Cho EJ (2014) Antioxidative effects of Kimchi under different fermentation stage on radical-induced oxidative stress. Nutr Res Pract 8: 638-643. doi: 10.4162/nrp.2014.8.6.638 
  39. Lipinski B (2011) Hydroxyl radical and its scavengers in health and disease. Oxid Med Cell Longev 2011: 809696. doi: 10.1155/2011/809696 
  40. Jakubczyk K, Dec K, Kaldunska J, Kawczuga D, Kochman J, Janda K (2020) Reactive oxygen species - sources, functions, oxidative damage. Pol Merkur Lekarski 48: 124-127