DOI QR코드

DOI QR Code

A Study on Ammonia Partial Oxidation over Ru Catalyst

Ru 촉매에서의 암모니아 부분산화에 대한 연구

  • SANGHO, LEE (Department of Mobility Power Research, Eco-friendly Energy Conversion Research Division, Korea Institute of Machinery and Materials) ;
  • HYEONGJUN, JANG (Department of Mobility Power Research, Eco-friendly Energy Conversion Research Division, Korea Institute of Machinery and Materials) ;
  • CHEOLWOONG, PARK (Department of Mobility Power Research, Eco-friendly Energy Conversion Research Division, Korea Institute of Machinery and Materials) ;
  • SECHUL, OH (Department of Mobility Power Research, Eco-friendly Energy Conversion Research Division, Korea Institute of Machinery and Materials) ;
  • SUNYOUP, LEE (Department of Mobility Power Research, Eco-friendly Energy Conversion Research Division, Korea Institute of Machinery and Materials) ;
  • YONGRAE, KIM (Department of Mobility Power Research, Eco-friendly Energy Conversion Research Division, Korea Institute of Machinery and Materials)
  • 이상호 (한국기계연구원 친환경에너지변환연구부 모빌리티동력연구실) ;
  • 장형준 (한국기계연구원 친환경에너지변환연구부 모빌리티동력연구실) ;
  • 박철웅 (한국기계연구원 친환경에너지변환연구부 모빌리티동력연구실) ;
  • 오세철 (한국기계연구원 친환경에너지변환연구부 모빌리티동력연구실) ;
  • 이선엽 (한국기계연구원 친환경에너지변환연구부 모빌리티동력연구실) ;
  • 김용래 (한국기계연구원 친환경에너지변환연구부 모빌리티동력연구실)
  • Received : 2022.10.13
  • Accepted : 2022.12.12
  • Published : 2022.12.30

Abstract

Green ammonia is a promising renewable energy carrier. Green ammonia can be used in various energy conversion devices (e.g., engine, fuel cell, etc.). Ammonia has to be fed with hydrogen for start-up and failure protection of some energy conversion devices. Ammonia can be converted into hydrogen by decomposition and partial oxidation. Especially, partial oxidation has the advantages of fast start-up, thermally self-sustaining operation and compact size. In this paper, thermodynamics, start-up and operation characteristics of ammonia partial oxidation were investigated. O2/NH3 ratio, ammonia flow rate and catalyst volume were varied as operation parameters. In thermodynamic analysis, ammonia conversion was maximized in the O2/NH3 range from 0.10 to 0.15. Ammonia partial oxidation reactor was successfully started using 12 V glow plug. At 0.13 of O2/HN3 ratio and 10 LPM of ammonia flow rate, ammonia partial oxidation reactor showed 90% of ammonia conversion over commercial Ru catalyst. In addition, Increasing O2/NH3 ratio from 0.10 to 0.13 was more effective for high ammonia conversion than increasing catalyst volume at 0.10 of O2/NH3.

Keywords

Acknowledgement

본 연구는 한국기계연구원 기본사업 "차세대 암모니아 연료전지 스택 및 시스템 개발"의 지원으로 수 행되었으며, 이에 감사드립니다.

References

  1. J. H. Woo, T. Y. Kim, J. E. Kim, B. O. Cho, S. Y. Jung, S. M. Park, S. C. Lee, and J. C. Kim, "Ni catalyst properties for ammonia reforming: comparison of Ni content and space velocity", Trans. Korean Hydrogen New Energy Soc., Vol. 32, No. 6, 2021, pp. 464469, doi: https://doi.org/10.7316/KHNES.2021.32.6.464.
  2. C. Arnaiz del Pozo and S. Cloete, "Technoeconomic assessment of blue and green ammonia as energy carriers in a lowcarbon future", Energy Conversion and Management, Vol. 255, 2022, pp. 115312, doi: https://doi.org/10.1016/j.enconman.2022.115312.
  3. P. Dimitriou and R. Javaid, "A review of ammonia as a compression ignition engine fuel", International Journal of Hydrogen Energy, Vol. 45, No. 11, 2020, pp. 70987118, doi: https://doi.org/10.1016/j.ijhydene.2019.12.209.
  4. S. Giddey, S. P. S. Badwal, C. Munnings, and M. Dolan, "Ammonia as a renewable energy transportation media", ACS Sustainable Chemistry & Engineering, Vol. 5, No. 11, 2017, pp. 1023110239, doi: https://doi.org/10.1021/acssuschemeng.7b02219.
  5. R. Cavaliere da Rocha, M. Costa, and X. S. Bai, "Chemical kinetic modelling of ammonia/hydrogen/air ignition, premixed flame propagation and NO emission", Fuel, Vol. 246, 2019, pp. 2433, doi: https://doi.org/10.1016/j.fuel.2019.02.102.
  6. S. Frigo and R. Gentili, "Analysis of the behaviour of a 4stroke Si engine fuelled with ammonia and hydrogen", International Journal of Hydrogen Energy, Vol. 38, No. 3, 2013, pp. 16071615, doi: https://doi.org/10.1016/j.ijhydene.2012.10.114.
  7. S. Frigo, R. Gentili, G. Ricci, G. Pozzana, and C. Comotti, "Experimental result using ammonia plus hydrogen in a S.I. engine", Lecture Notes in Electrical Engineering, Vol. 191, 2013, pp. 6576, doi: https://doi.org/10.1007/9783642337772.
  8. S. Frigo, R. Gentili, and F. De Angelis, "Further insight into the possibility to fuel a SI engine with ammonia plus hydrogen. In: SAE/JSAE 2014 Small Engine Technology Conference & Exhibition", SAE Technical Paper, Vol. 32, No. 82, 2014, pp. 2014320082, doi: https://doi.org/10.4271/2014320082.
  9. M. Comotti and S. Frigo, "Hydrogen generation system for ammonia-hydrogen fuelled internal combustion engines", International Journal of Hydrogen Energy, Vol. 40, No. 33, 2015, pp. 1067310686, doi: https://doi.org/10.1016/j.ijhydene.2015.06.080.
  10. M. Koike, T. Suzuoki, T. Takeuchi, T. Homma, S. Hariu, and Y. Takeuchi, "Coldstart performance of an ammonia-fueled spark ignition engine with an onboard fuel reformer", International Journal of Hydrogen Energy, Vol. 46, No. 50, 2021, pp. 2568925698, doi: https://doi.org/10.1016/j.ijhydene.2021.05.052.
  11. J. Yang, A. Fathi Salem Molouk, T. Okanishi, H. Muroyama, T. Matsui, and K. Eguchi, "A stability study of ni/yttria-stabilized zirconia anode for direct ammonia solid oxide fuel cells", ACS Applied Materials & Interfaces, Vol. 7, No. 51, 2015, pp. 2870128707, doi: https://doi.org/10.1021/acsami.5b11122.
  12. M. Kishimoto, H. Muroyama, S. Suzuki, M. Saito, T. Koide, Y. Takahashi, T. Horiuchi, H. Yamasaki, S. Matsumoto, H. Kubo, N. Takahashi, A. Okabe, S. Ueguchi, M. Jun, A. Tateno, T. Matsuo, T. Matsui, H. Iwai, H. Yoshida, and K. Eguchi, "Development of 1 kWclass ammoniafueled solid oxide fuel cell stack", Fuel Cells, Vol. 20, No. 1, 2020, pp. 8088, doi: https://doi.org/10.1002/fuce.201900131.
  13. T. Okanishi, K. Okura, A. Srifa, H. Muroyama, T. Matsui, M. Kishimoto, M. Saito, H. Iwai, H. Yoshida, M. Saito, T. Koide, H. Iwai, S. Suzuki, Y. Takahashi, T. Horiuchi, H. Yamasaki, S. Matsumoto, S. Yumoto, H. Kubo, J. Kawahara, A. Okabe, Y. Kikkawa, T. Isomura, and K. Eguchi, "Comparative study of ammonia-fueled solid oxide fuel cell systems", Fuel Cells, Vol. 17, No. 3, 2017, pp. 383390, doi: https://doi.org/10.1002/fuce.201600165.
  14. B. Stoeckl, M. Preininger, V. Subotic, H. Schroettner, P. Sommersacher, M. Seidl, S. Megel, and C. Hochenauer, "Ammonia as promising fuel for solid oxide fuel cells: experimental analysis and performance evaluation", ECS Transactions, Vol. 91, No. 1, 2019, pp. 16011610, doi: https://doi.org/10.1149/09101.1601ecst.
  15. S. Yoon, S. Lee, and J. Bae, "DDevelopment of a self-sustaining kWeclass integrated diesel fuel processing system for solid oxide fuel cells", International Journal of Hydrogen Energy, Vol. 36, No. 16, 2011, pp. 1030210310, doi: https://doi.org/10.1016/j.ijhydene.2010.10.001.
  16. J. Cha, Y. S. Jo, H. Jeong, J. Han, S. W. Nam, K. H. Song, and C. W. Yoon, "Ammonia as an efficient COXfree hydrogen carrier: fundamentals and feasibility analyses for fuel cell applications", Applied Energy, Vol. 224, 2018, pp. 194204, doi: https://doi.org/10.1016/j.apenergy.2018.04.100.
  17. S. Lee, Y. Choi, C. Park, H. Kim, Y. D. Lee, and Y. S. Kim, "A study on ammonia reforming catalyst and reactor design for 10 kW class ammonia-hydrogen dualfuel engine", Trans. of the Korean Hydrogen and New Energy Society, Vol. 31, No. 4, 2020, pp. 372379. doi: http://dx.doi.org/10.7316/KHNES.2020.31.4.372.