DOI QR코드

DOI QR Code

The Effects of Nozzle Shapes and Pressures on Boundary Layer Flashback of Hydrogen-Air Combustor

수소 전소용 연소 노즐 형상과 연소실 압력이 경계층 역화에 미치는 영향

  • WON JUNE, LEE (Department of Zero-carbon Fuel and Power Generation, Korea Institute of Machinery & Materials) ;
  • JEONGJAE, HWANG (Department of Zero-carbon Fuel and Power Generation, Korea Institute of Machinery & Materials) ;
  • HAN SEOK, KIM (Department of Zero-carbon Fuel and Power Generation, Korea Institute of Machinery & Materials) ;
  • KYUNGWOOK, MIN (Department of Zero-carbon Fuel and Power Generation, Korea Institute of Machinery & Materials) ;
  • MIN KUK, KIM (Department of Zero-carbon Fuel and Power Generation, Korea Institute of Machinery & Materials)
  • 이원준 (한국기계연구원 무탄소연료발전연구실) ;
  • 황정재 (한국기계연구원 무탄소연료발전연구실) ;
  • 김한석 (한국기계연구원 무탄소연료발전연구실) ;
  • 민경욱 (한국기계연구원 무탄소연료발전연구실) ;
  • 김민국 (한국기계연구원 무탄소연료발전연구실)
  • Received : 2022.12.16
  • Accepted : 2022.12.23
  • Published : 2022.12.30

Abstract

Hydrogen combustion in modern gas-turbine engine is the cutting edge technology as carbon-free energy conversion system. Flashback of hydrogen flame, however, is inevitable and critical specially for premixed hydrogen combustion. Therefore, this experimental investigation is conducted to understand flashback phenomenon in premixed hydrogen combustion. In order to investigate flashback characteristics in premixed hydrogen (H2)/air flame, we focus on pressure conditions and nozzle shapes. In general, quenching distance reduces as pressure of combustion chamber increases, causing flashback from boundary layer near wall. The flashback regime for reference and modified candidate configurations can broadly appear with increasing combustion chamber pressure. The later one can improve flashback-resist by compensating flow velocity at wall. Also, improved wall flow velocity profile of suggested contraction nozzle prevents entire flashback but causes local flashback at nozzle exit.

Keywords

Acknowledgement

이 논문은 2022년도 정부(산업통상자원부)의 재원으로 한국에너지기술평가원의 지원을 받아 수행된 연구이다(20206710100060, 분산발전 가스터빈용 수소 전소 저 NOx 연소기 개발).

References

  1. T. Lieuwen, V. McDonell, D. Santavicca, and T. Sattelmayer, "Burner development and operability issues associated with steady flowing syngas fired combustors", Combustion Science and Technology, Vol. 180, No. 6, 2008, pp. 1169-1192, doi: https://doi.org/10.1080/00102200801963375.
  2. S. L. Plee and A. M. Mellor, "Review of flashback reported in prevaporizing/premixing combustors", Combustion and Flame, Vol. 32, 1978, pp. 193-203, doi: https://doi.org/10.1016/0010-2180(78)90093-7.
  3. K. Asato, H. Wada, T. Hiruma, and Y. Takeuchi, "Characteristics of flame propagation in a vortex core: validity of a model for flame propagation", Combustion and Flame, Vol. 110, No. 4, 1997, pp. 418-428, doi: https://doi.org/10.1016/S0010-2180(97)00082-5.
  4. D. Thibaut and S. Candel, "Numerical study of unsteady turbulent premixed combustion: application to flashback simulation", Combustion and Flame, Vol. 113, No. 12, 1998, pp. 53-65, doi: https://doi.org/10.1016/S0010-2180(97)00196-X.
  5. J. O. Keller, L. Vaneveld, D. Korschelt, G. L. Hubbard, A. F. Ghoniem, J. W. Daily, and A. K. Oppenheim, "Mechanism of instabilities in turbulent combustion leading to flashback", AIAA Journal, Vol. 20, No. 2, 1982, pp. 254-262, doi: https://doi.org/10.2514/3.51073.
  6. B. Lewis and G. von Elbe, "Stability and structure of burner flames", The Journal of Chemical Physics, Vol. 11, No. 2, 1943, pp. 75-97, doi: https://doi.org/10.1063/1.1723808.
  7. R. Edse, "Studies on burner flames of hydrogen-oxygen mixtures at high pressures", WADC Technical Report, Vol. 52, No. 59, 1952, pp. 1-61. Retrieved from https://apps.dtic.mil/sti/pdfs/ADA075870.pdf.
  8. J. Grumer and M. E. Harris, "Temperature dependence of stability limits of burner flames", Ind. Eng. Chem., Vol. 46, No. 11, 1954, pp. 2424-2430, doi: https://doi.org/10.1021/ie50539a057.
  9. L. E. Bollinger and R. Edse, "Effect of burner-tip temperature on flash back of turbulent hydrogenoxygen flames", Ind. Eng. Chem., Vol. 48, No. 4, 1956, pp. 802-807, doi: https://doi.org/10.1021/ie50556a040.
  10. S. T. Lee and J. S. T'ien, "A numerical analysis of flame flashback in a premixed laminar system", Combustion and Flame, Vol. 48, 1982, pp. 273285, doi: https://doi.org/10.1016/0010-2180(82)90134-1.
  11. H. Lee, S. Hernandez, V. McDonell, E. Steinthorsson, A. Mansour, and B. Hollon, "Development of flashback resistant low-emission micro-mixing fuel injector for 100% hydrogen and syngas fuels", ASME Turbo Expo, Vol. 2, 2009, pp. 411-419, doi: https://doi.org/10.1115/GT2009-59502.
  12. S. R. Hernandez, Q. Wang, V. McDonell, A. Mansour, E. Steinthorsson, and B. Hollon, "Micro mixing fuel injectors for low emissions hydrogen combustion", ASME Turbo Expo, Vol. 3, 2008, pp. 675-685, doi: https://doi.org/10.1115/GT2008-50854.
  13. B. Hollon, E. Steinthorsson, A. Mansour, V. McDonell, and H. Lee, "Ultra-low emission hydrogen/syngas combustion with a 1.3 MW injector using a micro-mixing lean-premix system", ASME Turbo Expo, Vol. 2, 2011, pp. 827834, doi: https://doi.org/10.1115/GT2011-45929.
  14. M. de La Torre, S. Maldonado, S. Hossain, N. Love, and A. Choudhuri, "Flame stability of premixed syngas-air flames emitted from a multi-tube fuel injector", ASME Turbo Expo, Vol. 4B, pp. V04BT04A046, doi: https://doi.org/10.1115/GT2015-43623.
  15. B. G. Jones, R. J. Adrian, C. K. Nithianandan, and H. P. Planchon Jr., "Spectra of turbulent static pressure fluctuations in jet mixing layers", AIAA Journal, Vol. 17, No. 5, 1979, pp. 449-457, doi: https://doi.org/10.2514/3.61154.
  16. X. Grandchamp, Y. Fujiso, B. Wu, and A. Van Hirtum, "Steady laminar axisymmetrical nozzle flow at moderate Reynolds numbers: modeling and experiment", J. Fluids Eng., Vol. 134, No. 1, 2012, pp. 011203, doi: https://doi.org/10.1115/1.4005690.
  17. G. Baumgartner and T. Sattelmayer, "Experimental investigation of the flashback limits and flame propagation mechanisms for premixed hydrogen-air flames in non-swirling and swirling flow", ASME Turbo Expo, Vol. 1B, 2013, pp. V01AT04A010, doi: https://doi.org/10.1115/GT2013-94258.
  18. C. K. Law, "Combustion physics", Cambridge University Press, UK, 2006, doi: https://doi.org/10.1017/CBO9780511754517.
  19. S. R. Turns, "An introduction to combustion: concepts and applications", 3rd ed., McGraw-Hill, USA, 2011.
  20. F. M. White, "Viscous fluid flow", 3rd ed., McGraw-Hill, USA, 2006.