DOI QR코드

DOI QR Code

A Study on Optimal Operation of Methanol Steam Reforming System for Hydrogen Fuel Cell Propulsion Ships

수소 연료전지 추진 선박 적용을 위한 메탄올 수증기 개질 시스템 최적 운전점 연구

  • HEEJOO, CHO (Daewoo Shipbuilding & Marine Engineering) ;
  • SOOBIN, HYEON (Department of Naval Architecture and Offshore Engineering, Dong-A University) ;
  • SEUNGKYO, JUNG (Daewoo Shipbuilding & Marine Engineering) ;
  • HYUNJIN, JI (Agency for Defense Development) ;
  • JUNGHO, CHOI (Department of Naval Architecture and Offshore Engineering, Dong-A University)
  • 조희주 (대우조선해양 서울대학교 시흥R&D센터) ;
  • 현수빈 (동아대학교 조선해양플랜트공학과) ;
  • 정승교 (대우조선해양 서울대학교 시흥R&D센터) ;
  • 지현진 (국방과학연구소) ;
  • 최정호 (동아대학교 조선해양플랜트공학과)
  • Received : 2022.07.24
  • Accepted : 2022.12.21
  • Published : 2022.12.30

Abstract

Hydrogen fuel cell propulsion ships are emerging to respond to the recently strengthened carbon emission regulations in the international shipping sector. Methanol can be stored in a liquid state at normal pressure and temperature, and has the advantage of lower reforming temperature compared to other fuels. In this study, the optimal operating point of the methanol steam reforming system was derived by changing the Steam Carbon Ratio (SCR) from 0.10 to 3.00. Results showed that In terms of methanol conversion rate and hydrogen yield, the larger the SCR is the better, but in terms of system efficiency, it is most advantageous to operate at SCR 0.70 in Pressure Swing Adsorption (PSA) mode and SCR 0.80 in Pd membrane mode. Through this study, it was found that the optimal SCR in the reformer and the entire system including the reformer may be different, which indicates that the optimum operating point may be different depending on the change of the system configuration.

Keywords

Acknowledgement

본 연구는 국방과학연구소의 지원으로 수행된 연구 결과 중 일부임을 밝히며, 연구비 지원에 감사드립니다(Project Name: UC180032GD).

References

  1. T. H. Joung, S. G. Kang, J. K. Lee, and J. Ahn, "The IMO initial strategy for reducing greenhouse gas (GHG) emissions, and its follow-up actions towards 2050", Journal of International Maritime Safety, Environmental Affairs, and Shipping, Vol. 4, No. 1, 2020, pp. 17, doi: https://doi.org/10.1080/25725084.2019.1707938.
  2. A. Chircop, "The IMO initial strategy for the reduction of GHGs from international shipping: a commentary", The International Journal of Marine and Coastal Law, Vol. 34, No. 3, 2019, pp. 482-512, doi: https://doi.org/10.1163/1571808513431093.
  3. L. van Biert, M. Godjevac, K. Visser, and P. V. Aravind, "A review of fuel cell systems for maritime applications", Journal of Power Sources, Vol. 327, 2016, pp. 345-364, doi: https://doi.org/10.1016/j.jpowsour.2016.07.007.
  4. G. Roh, H. Kim, H. Jeon, and K. Yoon, "Fuel consumption and CO2 emission reductions of ships powered by a fuelcellbased hybrid power source", Journal of Marine Science and Engineering, Vol. 7, No. 7, 2019, pp. 230, doi: https://doi.org/10.3390/jmse7070230.
  5. E. Rivard, M. Trudeau, and K. Zaghib, "Hydrogen storage for mobility: a review", materials, Vol. 12, No. 12, 2019, pp. 1973, doi: https://doi.org/10.3390/ma12121973.
  6. S. Sa, H. Silva, J. M. Sousa, and A. Mendes, "Hydrogen production by methanol steam reforming in a membrane re actor: palladium vs carbon molecular sieve membranes", Journal of Membrane Science, Vol. 339, No. 12, 2009, pp. 160-170, doi: https://doi.org/10.1016/j.memsci.2009.04.045.
  7. M. S. Herdem, S. Farhad, and F. Hamdullahpur, "Modeling and parametric study of a methanol reformate gas-fueled HT-PEMFC system for portable power generation applications", Energy Conversion and Management, Vol. 101, 2015, pp. 19-29, doi: https://doi.org/10.1016/j.enconman.2015.05.004.
  8. D. R. Palo, R. A. Dagle, and J. D. Holladay, "Methanol steam reforming for hydrogen production", Chemical Reviews, Vol. 107, No. 10, 2007, pp. 39924021, doi: https://doi.org/10.1021/cr050198b.
  9. K. Faungnawakij, R. Kikuchi, and K. Eguchi, "Thermodynamic evaluation of methanol steam reforming for hydrogen production", Journal of Power Sources, Vol. 161, No. 1, 2006, pp. 87-94, doi: https://doi.org/10.1016/j.jpowsour.2006.04.091.
  10. O. Ozcan and A. N. Akin, "Thermodynamic analysis of methanol steam reforming to produce hydrogen for HT-PEMFC: an optimization study", International Journal of Hydrogen Energy, Vol. 44, No. 27, 2019, pp. 14117-14126, doi: https://doi.org/10.1016/j.ijhydene.2018.12.211.
  11. S. K. Jung, W. S. Cha, Y. I. Park, S. H. Kim, and J. Choi, "Conceptual design development of a fuel-reforming system for fuel cells in underwater vehicles", energies, Vol. 13, No. 8, 2020, pp. 2000, doi: https://doi.org/10.3390/en13082000.
  12. H. Ji, E. Choi, and J. Lee, "Optimal operation condition of pressurized methanol fuel processor for underwater environment", Trans. of the Korean Hydrogen and New Energy Society, Vol. 27, No. 5, 2016, pp. 485493, doi: https://doi.org/10.7316/KHNES.2016.27.5.485.
  13. Y. M. Lin and M. H. Rei, "Study on the hydrogen production from methanol steam reforming in supported palladium membrane reactor", Catalysis Today, Vol. 67, No. 13, 2001, pp. 7784, doi: https://doi.org/10.1016/S0920-5861(01)00267-X.
  14. H. Ji, J. Lee, E. Choi, and I. Seo, "Hydrogen production from steam reforming using an indirect heating method", International Journal of Hydrogen Energy, Vol. 43, No. 7, 2018, pp. 3655-3663, doi: https://doi.org/10.1016/j.ijhydene.2017.12.137.
  15. A. Perna, "Hydrogen from ethanol: theoretical optimization of a PEMFC system integrated with a steam reforming processor", International Journal of Hydrogen Energy, Vol. 32, No. 12, 2007, pp. 1811-1819, doi: https://doi.org/10.1016/j.ijhydene.2006.08.058.
  16. H. Lee, I. Jung, G. Roh, Y. Na, and H. Kang, "Comparative analysis of onboard methane and methanol reforming systems combined with HT-PEM fuel cell and CO2 capture/liquefaction system for hydrogen fueled ship application", Energies, Vol. 13, No. 1, 2020, pp. 224, doi: https://doi.org/10.3390/en13010224.
  17. U. Cheon, K. Ahn, and H. Shin, "Study on the characteristics of methanol steam reformer using latent heat of steam", Trans. of Korean Hydrogen and New Energy Society, Vol. 29, No. 1, 2018, pp. 19-24, doi: https://doi.org/10.7316/KHNES.2018.29.1.19.
  18. H. Ji, K. Baik, S. Yang, and S. Jung, "Startup strategy of multistage burner for methanol fuel reforming plant", Trans. of the Korean Hydrogen and New Energy Society, Vol. 30, No. 3, 2019, pp. 201-208, doi: https://doi.org/10.7316/KHNES.2019.30.3.201.
  19. Xebec Adsorption Inc., "Pressure Swing Adsorption (PSA) Systems for Ultra-Pure Hydrogen & Other Industry Gas Purification", Xebec Adsorption Inc., 2021. Retrieved from https://xebecinc.com/wp-content/uploads/2021/06/Xebec-Hydrogen-Brochure.pdf.
  20. P. M. Ruya, S. S. Lim, R. Purwadi, and M. Zunita, "Sustainable hydrogen production from oil palm derived wastes through autothermal operation of supercritical water gasification system", Energy, Vol. 208, 2020, pp. 118280, doi: https://doi.org/10.1016/j.energy.2020.118280.
  21. L. Fiori, M. Valbusa, and D. Castello, "Supercritical water gasification of biomass for H2 production: Process design", Bioresource Technology, Vol. 121, 2012, pp. 139-147, doi: https://doi.org/10.1016/j.biortech.2012.06.116.
  22. I. A. Fernandez, M. R. Gomez, J. R. Gomez, and L. M. Lopez-Gonzalez, "H2 production by the steam reforming of excess boil off gas on LNG vessels", Energy Conversion and Management, Vol. 134, 2017, pp. 301-313, doi: https://doi.org/10.1016/j.enconman.2016.12.047.
  23. S. Martin and A. Worner, "Onboard reforming of bio diesel and bioethanol for high temperature PEM fuel cells: comparison of autothermal reforming and steam reforming", Journal of Power Sources, Vol. 196, No. 6, 2011, pp. 3163-3171, doi: https://doi.org/10.1016/j.jpowsour.2010.11.100.
  24. Y. Lee, "Analysis of the characteristics of reformer for the application of hydrogen fuel cell systems to lng fueled ships", Journal of the Korean Society of Marine Environment and Safety, Vol. 27, No. 1, 2021, pp. 135-144, doi: https://doi.org/10.7837/kosomes.2021.27.1.135.