DOI QR코드

DOI QR Code

1D Kinetics Model of NH3-Fed Solid Oxide Fuel Cell

암모니아 공급 고체산화물 연료전지의 1D 반응 모델

  • VAN-TIEN, GIAP (Department of Zero-carbon Fuel and Power Generation, Korea Institute of Machinery & Materials (KIMM)) ;
  • THAI-QUYEN, QUACH (Department of Zero-carbon Fuel and Power Generation, Korea Institute of Machinery & Materials (KIMM)) ;
  • KOOK YOUNG, AHN (Department of Zero-carbon Fuel and Power Generation, Korea Institute of Machinery & Materials (KIMM)) ;
  • YONGGYUN, BAE (Department of Zero-carbon Fuel and Power Generation, Korea Institute of Machinery & Materials (KIMM)) ;
  • SUNYOUP, LEE (Mechanical Engineering, University of Science and Technology (UST)) ;
  • YOUNG SANG, KIM (Department of Zero-carbon Fuel and Power Generation, Korea Institute of Machinery & Materials (KIMM))
  • 잡반티엔 (한국기계연구원 무탄소연료발전연구실) ;
  • 쿠엔 (한국기계연구원 무탄소연료발전연구실) ;
  • 안국영 (한국기계연구원 무탄소연료발전연구실) ;
  • 배용균 (한국기계연구원 무탄소연료발전연구실) ;
  • 이선엽 (과학기술연합대학원대학교 융합기계시스템전공) ;
  • 김영상 (한국기계연구원 무탄소연료발전연구실)
  • Received : 2022.08.22
  • Accepted : 2022.10.12
  • Published : 2022.12.30

Abstract

Cracking ammonia inside solid oxide fuel cell (SOFC) stack is a compact and simple way. To prevent sharp temperature fluctuation and increase cell efficiency, the decomposition reaction should be spread on whole cell area. This leading to a question that, how does anode thickness affect the conversion rate of ammonia and the cell voltage? Since the 0D model of SOFC is useful for system level simulation, how accurate is it to use equilibrium solver for internal ammonia cracking reaction? The 1D model of ammonia fed SOFC was used to simulate the diffusion and reaction of ammonia inside the anode electrode, then the partial pressure of hydrogen and steam at triple phase boundary was used for cell voltage calculation. The result shows that, the ammonia conversion rate increases and reaches saturated value as anode thickness increase, and the saturated thickness is bigger for lower operating temperature. The similar cell voltage between 1D and 0D models can be reached with NH3 conversion rate above 90%. The 0D model and 1D model of SOFC showed similar conversion rate at temperature over 750℃.

Keywords

Acknowledgement

This work was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (No. 20213030040110). This research was also supported by a grant of the Research Program funded by the Korea Institute of Machinery and Materials (project name: Development of an ammonia fuel cell stack and system, grant number: NK237G).

References

  1. IRENA, "Energy transition 2020", IRENA, 2020. Retrieved from https://www.irena.org/energytransition#:~:text=The%20energy%20transition%20is%20a,emissions%20to%20limit%20climate%20change.
  2. Air Liquide S.A., A., Anglo American plc, BMW Group, Daimler AG, Engie S.A., Honda Motor Co. Ltd, Hyundai Motor Company, Kawasaki Heavy Industries Ltd., Royal Dutch Shell, The Linde Group, and Total S.A., Toyota Motor Corporation, "How hydrogen empowers the energy transition", 2017, Hydrogen Council. Retrieved from https://www.aeh2.org/iages/stries/AEH2/Docs_Externos/20170109hydrogencouncilvisiondocument.pdf.
  3. M. V. Lototskyy, V. A. Yartys, B. G. Pollet, and R. C. Bowman Jr, "Metal hydride hydrogen compressors: a review", Int. J. Hydrogen Energy, Vol. 39, No. 11, 2014, pp. 5818-5851, doi: https://doi.org/10.1016/j.ijhydene.2014.01.158.
  4. N. A. A. Rusman and M. Dahari, "A review on the current progress of metal hydrides material for solid-state hydrogen storage applications", Int. J. Hydrogen Energy, Vol. 41, No. 28, 2016, pp. 12108-12126, doi: https://doi.org/10.1016/j.ijhydene.2016.05.244.
  5. J. S. Lee, A. Cherif, H. J. Yoon, S. K. Seo, J. E. Bae, H. J. Shin, C. Lee, H. Kwon, and C. J. Lee, "Large-scale overseas trans portation of hydrogen: comparative techno-economic and environmental investigation", Renewable and Sustainable Energy Reviews, Vol. 165, 2022, pp. 112556, doi: https://doi.org/10.1016/j.rser.2022.112556.
  6. S. Ghavam, M. Vahdati, I. A. Grant Wilson, and P. Styring, "Sustainable ammonia production processes", Front. Energy Res., 2021, doi: https://doi.org/10.3389/fenrg.2021.580808.
  7. IEA, "Ammonia technology roadmap", IEA, 2021. Retrieved from https://www.iea.org/reports/ammoniatechnologyroadmap.
  8. S. A. Hajimolana, M. A. Hussain, W. M. A. Wan Daud, M. Soroush, and A. Shamiria, "Mathematical modeling of solid oxide fuel cells: a review", Renewable and Sustainable Energy Reviews, Vol. 15, No. 4, 2011, pp. 18931917, doi: https://doi.org/10.1016/j.rser.2010.12.011.
  9. M. E. E. Abashar, "Ultraclean hydrogen production by am monia decomposition", Journal of King Saud University  Engineering Sciences, Vol. 30, No. 1, 2018, pp. 2-11, doi: https://doi.org/10.1016/j.jksues.2016.01.002.
  10. E. S. Hecht, G. K. Gupta, H. Zhu, A. M. Dean, R. J. Kee, L. Maier, and O. Deutschmann, "Methane reforming kinetics within a NiYSZ SOFC anode support", Applied Catalysis A: General, Vol. 295, No.1 , 2005, pp. 4051, doi: https://doi.org/10.1016/j.apcata.2005.08.003.
  11. T. Q. Quach, V. T. Giap, D. K. Lee, I. T. Pineda, and K. Y. Ahn, "Parametric study of a high-performance ammo-niafed SOFC standalone system", Journal of Mechanical Science and Technology, Vol. 36, No. 6, 2022, pp. 3193-3201, doi: https://doi.org/10.1007/s1220602205507.
  12. G. Cinti, G. Discepoli, E. Sisani, and U. Desideri, "SOFC operating with ammonia: stack test and system analysis", Int. J. Hydrogen Energy, Vol. 41, No. 31, 2016, pp. 13583-13590, doi: https://doi.org/10.1016/j.ijhydene.2016.06.070.