DOI QR코드

DOI QR Code

FIXED POINT THEOREM VIA MEIR-KEELER CONTRACTION IN RECTANGULAR Mb-METRIC SPACE

  • Asim, Mohammad (Department of Mathematics, Faculty of Science, Shree Guru Gobind Singh Tricentenary University) ;
  • Meenu, Meenu (Department of Mathematics, Faculty of Science, Shree Guru Gobind Singh Tricentenary University)
  • Received : 2022.01.31
  • Accepted : 2022.03.18
  • Published : 2022.03.30

Abstract

In this paper, we present a fixed point theorem for Meir-Keeler contraction in the framework of Rectangular Mb-metric Space. Our main result improves some existing results in literature. An example is also adopted to exhibit the utility of our main result.

Keywords

References

  1. A.H. Ansari, O. Ege and S. Radenovic, Some fixed point results on complex valued Gb-metric spaces, Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales, Seria A. Matematicas, 112 (2), (2018), 463-472. https://doi.org/10.1007/s13398-017-0391-x
  2. M. Arshad, J. Ahmad and E. Karapinar, Some Common Fixed Point Results in Rectangular Metric Spaces. International Journal of Analysis, 2013, (2013), 1-7.
  3. M. Asadi, E. Karapinar and P. Salimi, New extension of p-metric spaces with some fixed-point results on M-metric spaces, J. Inequal. Appl., 2014, 18, (2014), 1-9.
  4. M. Asim, M. Imdad and S. Radenovic : Fixed point results in extended rectangular b-metric spaces with an application. U.P.B. Sci. Bull., Series A, 81 (2), (2019), 1-8.
  5. M. Asim, A R. Khan and M. Imdad, Rectangular Mb-metric space and fixed point results, J. of Mathematical Analysis , 10, (2019), 10-18.
  6. M. Asim, S. Mujahid, and I. Uddin, Meir-Keeler Contraction In Rectangular M-Metric Space, Topol. Algebra Appl, 9, (2021), 96-104.
  7. H. Aydi, R. Bankovic, I. Mitrovic and M. Nazam, Nemytzki-Edelstein-Meir-Keeler Type Results in b-metric Spaces, Discrete Dynamics in Nature and Society, 4745764, 7, (2018), 1-7.
  8. I. A. Bakhtin, The contraction mapping principle in almost metric spaces, Funct. Anal., Gos. Ped. Inst. Unianowsk, 30, (1989), 26-37.
  9. S. Banach, Sur les operations dans les ensembles abstraits et leur application aux equations integrals, Fund. Math, 3, (1922), 133-181. https://doi.org/10.4064/fm-3-1-133-181
  10. A. Branciari, A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces, Publ. Math., 57, (2000), 31-37.
  11. S. Czerwik, Contraction mappings in b-metric spaces, Acta Mathematica et Informatica Universitatis Ostraviensis, 1 (1), (1993), 5-11.
  12. H.S. Ding, M. Imdad, S. Radenovic, J. Vujakovic, On some fixed point results in b-metric, rectangular and b-rectangular metric spaces, Arab Journal of Mathematical Sciences, 22 (2), (2016), 151-164. https://doi.org/10.1016/j.ajmsc.2015.05.003
  13. O. Ege, Complex valued rectangular b-metric spaces and an application to linear equations, Journal of Nonlinear Science and Applications, 8 (6), (2015), 1014-1021. https://doi.org/10.22436/jnsa.008.06.12
  14. O. Ege, Complex valued Gb-metric spaces, Journal of Computational Analysis and Applications, 21 (2), (2016), 363-368.
  15. O. Ege, Some fixed point theorems in complex valued Gb-metric spaces, Journal of Nonlinear and Convex Analysis, 18 (11), (2017), 1997-2005.
  16. O. Ege and I. Karaca, Common fixed point results on complex valued Gb-metric spaces, Thai Journal of Mathematics, 16 (3), (2018), 775-787.
  17. O. Ege, C. Park, A.H. Ansari, A different approach to complex valued Gb-metric spaces, Advances in Difference Equations, 2020:152, https://doi.org/10.1186/s13662-020-02605-0, (2020), 1-13.
  18. M. R. Frechet, Sur quelques points du calcul fonctionnel, Rendic. Circ. Mat. Palermo. 22, (1906), 1-74. https://doi.org/10.1007/BF03018603
  19. R George, S. Radenovic, K P Reshma and S Shukla, Rectangular b-metric space and cont Rectangular b-metric space and contraction principles, J. Nonlinear Sci. Appl 1 (8), (2015), 1005-1013.
  20. N. Gholamian and M. Khanehgir: Fixed points of generalized Meir-Keeler contraction mappings in b-metric-like spaces, Fixed Point Theory and Applications, 2016 (34), (2016).
  21. A. Gholidahneh, S. Sedghi, O. Ege, Z. D. Mitrovic and M. de la Sen, The Meir-Keeler type contractions in extended modular b-metric spaces with an application, AIMS Mathematics, 6 (2), (2021), 1781-1799. https://doi.org/10.3934/math.2021107
  22. S. Gulyaz and E. Karapinar and I. M. Erhan : Generalized α-Meir-Keeler contraction mappings on Branciari b-metric spaces, Filomat, 17 (31), (2017), 5445-5456.
  23. M. Iqbal, A. Batool, O. Ege and M. de la Sen, Fixed point of almost contraction in b-metric spaces, Journal of Mathematics, 2020, 3218134, (2020), 1-6.
  24. M. Iqbal, A. Batool, O. Ege and M. de la Sen, Fixed point of generalized weak contraction in b-metric spaces, Journal of Function Spaces, 2021, 8, (2021), 1-8.
  25. Z. Kadelburg and S. Radenovic, Pata-type common fixed point results in b-metric and brectangular metric spaces, Journal of Nonlinear Analysis and Applications, 8, (2015), 944-954.
  26. T. Kamran, M. Samreen and Q. U. L. Ain, A generalization of b-Metric space and some fixed point theorems, Mathematics, 5 (2), 19, (2017), doi.org/10.3390/math5020019.
  27. E. Karapinar, S. Czerwik and H. Aydi, (α, ϕ)-Meir-Keeler Contraction Mappings in Generalized b-Metric Spaces, Journal of Function Spaces, 2018 (4), 3264620, (2018).
  28. S. G. Matthews, Partial metric topology, Annals of the New York Academy of Sciences, 728, (1994), 183-197. https://doi.org/10.1111/j.1749-6632.1994.tb44144.x
  29. A. Meira and E. Keeler A Theorem on Contraction Mappings, J. of Mathematical Analysis and Applications, 28, (1969), 326-369. https://doi.org/10.1016/0022-247x(69)90031-6
  30. Z. D. Mitrovic, A note on a Banachs fixed point theorem in b-rectangular metric space and b-metric space, Mathematica Slovaca, 68 (5), (2018), 1113-1116. https://doi.org/10.1515/ms-2017-0172
  31. Z. D. Mitrovi and S. Radenovi, On Meir-Keeler contraction in Branciari b-metric spaces, Trans. A. Razmadze Math. Inst., 173, (2019), 83-90.
  32. N. Mlaiki, N. Souayah, K. Abodayeh and T. Abdeljawad, Meir-Keeler contraction mappings in Mb-metric Spaces, J. Computational Analysis and applications, 4 (27) ,(2019).
  33. N. Mlaiki, A. Zarrad, N. Souayah, A. Mukheimer and T. Abdeljawed, Fixed Point Theorems in Mb-metric spaces, J. Math. Anal., 7, (2016), 1-9.
  34. N. Y. Ozgur, N. Mlaiki, N. Tas and N. Souayah, A new generalization of metric spaces: rectan-gular M-metric spaces, Mathematical Sciences, 12, (2018), 223-233. https://doi.org/10.1007/s40096-018-0262-4
  35. B. Samet, C. Vetro and H. Yazidi, A fixed point theorem for a Meir-Keeler type contraction through rational expression, J. Nonlinear Sci. Appl., 6, (2013), 162-169. https://doi.org/10.22436/jnsa.006.03.02
  36. T. L. Shateri, O. Ege and M. de la Sen, Common fixed point on the bv(s)-metric space of function-valued mappings, AIMS Mathematics, 6 (1), (2021), 1065-1074. https://doi.org/10.3934/math.2021063
  37. S. Shukla, Partial b metric Spaces and Fixed Point Theorems, Mediterranean Journal of Mathematics, 11 (2), (2014), 703-711. https://doi.org/10.1007/s00009-013-0327-4
  38. S. Shukla, Partial Rectangular Metric Spaces and Fixed Point Theorems, The Scientific World Journal, 7, (2014), dx.doi.org/10.1155/2014/756298.