DOI QR코드

DOI QR Code

Analysis on Water Retention Rate according to Water Cycle Characteristics in Jeju Gotjawal Forest

제주 곶자왈 산림의 물순환 특성에 따른 수원함양률 분석

  • Jaehoon, Kim (Urban Forests Division, Forest Environment and Conservation Department, National Institute of Forest Science) ;
  • Honggeun, Lim (Urban Forests Division, Forest Environment and Conservation Department, National Institute of Forest Science) ;
  • Hyung Tae, Choi (Urban Forests Division, Forest Environment and Conservation Department, National Institute of Forest Science) ;
  • Qiwen, Li (Urban Forests Division, Forest Environment and Conservation Department, National Institute of Forest Science) ;
  • Haewon, Moon (Urban Forests Division, Forest Environment and Conservation Department, National Institute of Forest Science) ;
  • Hyungsoon, Choi (Global Forestry Division, Future Forest Strategy Department, National Institute of Forest Science)
  • 김재훈 (국립산림과학원 산림환경보전연구부 도시숲연구과) ;
  • 임홍근 (국립산림과학원 산림환경보전연구부 도시숲연구과) ;
  • 최형태 (국립산림과학원 산림환경보전연구부 도시숲연구과) ;
  • 이기문 (국립산림과학원 산림환경보전연구부 도시숲연구과) ;
  • 문혜원 (국립산림과학원 산림환경보전연구부 도시숲연구과) ;
  • 최형순 (국립산림과학원 미래산림전략연구부 국제산림연구과 )
  • Received : 2022.08.22
  • Accepted : 2022.11.22
  • Published : 2022.12.31

Abstract

This study was carried out to analyze water cycle characteristics and evaluate water retention function in Jeju Gotjawal forest from 2013 to 2017. The average ratio of throughfall, stemflow, interception loss in Seonhul Gotjawal (SH) and Cheongsu Gotjawal (CS) was 43.1%, 15.8%, and 41.1%, respectively. Rainfall-throughfall, rainfall-stemflow, and rainfall-interception loss were expressed as linear regression equation (p<0.001). The comparison results showed that SH was higher than CS (p<0.05), indicating that the canopy area had an important effect on the difference in stand structure. The average water resources retention rate of the Gotjawal region was 41.9%, which is similar to the total water resources retention rate (40.6%) of Jeju Special Self-Governing Province (JSSGP). Currently, the development of Gotjawal is in progress in JSSGP. The development of Gotjawal will lead to a decrease in the water resources retention rate due to changes in the surface environment such as an increase in impervious areas, which will affect the total groundwater content of JSSGP. Therefore, the conservation of the Gotjawal area is judged to be very important from the point of view of water conservation.

Keywords

References

  1. Ahn, U. S., Sohn, Y. K., Kang, S. S., Jeon, Y. M., Choi, H. S., 2015, The major causes of Gotjawal formation in Jeju Island, J. Geol. Soc. Korea, 51, 1-19. https://doi.org/10.14770/jgsk.2015.51.1.1
  2. Andre, F., Jonard, M., Jonard, F., Ponette, Q., 2011, Spatial and temporal patterns of throughfall volume in a deciduous mixed-species stand, J. Hydrol., 400, 244-254. https://doi.org/10.1016/j.jhydrol.2011.01.037
  3. Asdak, C., Jarvis, P. G., Gardingen, P. V., 1998, Modelling rainfall interception in unlogged and logged forest areas of central Kalimantan, Indonesia, Hydrol. Earth. Syst. Sci.. 2, 211-220. https://doi.org/10.5194/hess-2-211-1998
  4. Choi, S. J., Hyeon, H. J., 2018, Consideration of defining Gotjawal, Literature and Environment, 17, 77-101. https://doi.org/10.36063/asle.2018.17.1.003
  5. Friesen, J., Van Stan II, J. T., 2019, Early european observations of precipitation partitioning by vegetation: a synthesis and evaluation of 19th century findings, Geosci., 9, 423-430. https://doi.org/10.3390/geosciences9100423
  6. Granier, A., 1985, A New method of sap flow measurement in tree stems, Ann. sci., 42, 193-200. https://doi.org/10.1051/forest:19850204
  7. Han, C., Zhang, C., Liu, Y., Li, Y., Zhou, T., Khan S., Chen N., Zhao, C., 2021, The capacity of ion adsorption and purification for coniferous forests is stronger than that of broad-leaved forests, Ecotoxicol. Environ. Saf., 215, 1-10.
  8. Haworth, K., McPherson, G. R., 1995, Effects of Quercus emoryitrees on precipitation distribution and microclimate in a semi-arid savanna, J. Arid Environ., 31, 153-170.
  9. Jang, Y. C., Lee, C. W., 2009, Gotjawal Forest In Jeju Island as an Internationally Important Wetland, Wetl. J., 11, 99-104.
  10. Jeju Province Government (JPG), 2003, Jeju Island hydrogeology and groundwater resources comprehensive survey (III), Jeju Province Government and K Water, National Institute of Forest Science, Jeju, Korea.
  11. Jeju Special Self-Governing Province (JSSGP), 2009, Jeju Dictionary, Jeju Foundation for Arts and Culture, Jeju, Korea. 83-84.
  12. Jeju Special Self-Governing Province (JSSGP), 2013, Jeju Island water resources management comprehensive plan, Jeju, Korea.
  13. Jeju Special Self-Governing Province (JSSGP), 2014, Jeju Special Self-Governing Province and Gotjawal conservation and management ordinance, No. 1198, Jeju Special Self-Governing Province, Jeju, Korea.
  14. Jeju Special Self-Governing Province (JSSGP), 2018, Jeju Island water resources management comprehensive plan, Jeju. Korea.
  15. Jeon, Y., Ahn, U. S., Ryu, C. G., Kang, S. S., Song, S. T., 2012, A Review of geological characteristics of Gotjawal terrain in Jeju Island: preliminary study, J. Geo. Soc. Korea., 48, 425-434.
  16. Jeon, Y. M., Kim, D. S., Ki, J. S., Koh, J. G., 2015, A Proposal for geological classification of Gotjawal terrain in Jeju Island and its meaning, J. Geo. Soc. Korea., 51, 235-241. https://doi.org/10.14770/jgsk.2015.51.2.235
  17. Jin, H. O., Son, Y. W., 2007, Nutrient dynamics and water quantity throughfall and stemflow in natural oak stands in Korea, KJAFM, 9, 61-70.
  18. Jung, M. H., Lee, D. K., Um, T. W., 2007, Differences of nutrient input by throughfall, stemflow and litterfall between deciduous forest and Larix kaempferi plantation in Mt. Joonwang, Kangwon-do, KJSSF, 40, 136-144.
  19. K-Water, 1993, Jeju Island water resources comprehensive development plan establishment report, Daejon, Korea.
  20. Khan, M. A., 1999, Water balance and hydrochemistry of precipitation components in forested ecosystems in the arid zone of Rajasthan, India, Hydrol. Sci., 44, 149-161. https://doi.org/10.1080/02626669909492214
  21. Killingbeck, K. T., Mohan, K. W., 1978, Analysis of a North Dakota gallery forest: nNutrient, trace element and productivity relations, Oikos, 30, 29-60. https://doi.org/10.2307/3543521
  22. Kim, H. H., Park, E. J., Hyeon, H. J., Seo, Y. O., Park, J. H., 2020(b), Comparison on vegetation structure of Gotjawal area in Jeju Island, J. Agric. Life Sci., 54, 43-50. https://doi.org/10.14397/jals.2020.54.4.43
  23. Kim, H. H., Park, E. J., Jeong, K. S., Seo, Y. O., Yim, E. Y., Park, J. H., 2020(a), Vegetation structure and management by forest types in Jeju Gotjawal experimental forest, J. Agric. Life Sci., 54, 55-62.
  24. Kim, K. H., Jeong, Y. H., Jeong, C. G., 2003, Effects of thinning and pruning on net rainfall and interception loss in Abies holophylla, J. Korean For. Soc., 92, 276-283.
  25. Kim, K. H., Jun, J. H., Yoo, J. Y., Jeong, Y. H., 2005, Throughfall, stemflow and interception loss of natural old-growth deciduous and planted young coniferous in Gwangneung and the rehabilitated young mixed forestin Yangju, Gyeonggido(I)-with a special reference on the result measurement, J. Korean Soc. For. Sci., 94, 488-495.
  26. Kim, K. H., Shin, J. Y., Koh, E. H., Lee, K. K., 2009, Sea level rise around Jeju Island due to global warming and movement of groundwater/seawater interface in the eastern part of Jeju Island, KSFEA., 14, 68-79.
  27. Kim, K. H., Woo, B. M., 1988, Study on rainfall interception loss from canopy in forest (I), J. Korean For. Soc., 77, 331-337.
  28. Lee, D. K., Kim, G. T., Joo, K. Y., Kim, Y. S., 1997, Throughfall, stemflow and rainfall interception loss in Pinus koraiensis Sieb. et Zucc., Larix leptolepis (Sieb. et Zucc.) Gordon and Quercus species stand at Kwangju-Gun, Kyunggi-Do, J. Korean For. Soc., 86, 200-207.
  29. Levia Jr, D. F., Frost, E. E., 2003, A Review and evaluation of stemflow literature in the hydrologic and biogeochemical cycles of forested and agricultural ecosystems, J. Hydrol., 274, 1-29. https://doi.org/10.1016/S0022-1694(02)00399-2
  30. Medeiros, P. H. A., de Araujo, J. C., Bronstert, A., 2009, Interception measurements and assessment of Gash model performance for a tropical semi-arid region, RCA, 40, 165-174.
  31. Min, H. J., Woo, B. M., 1995, Throughfall, stemflow and interception loss at Pinus taeda and Pinus densiflora stands, J. Korean For. Soc., 84, 502-516.
  32. Molina, A. J., Llorens, P., Garcia-Estringana, P., de las Heras, M. M., Cayuela, C., Gallart, F., Latron, J., 2019, Contributions of throughfall, forest and soil characteristics to near-surface soil water-content variability at the plot scale in a mountainous Mediterranean area, Sci. Total Environ., 647, 1421-1432. https://doi.org/10.1016/j.scitotenv.2018.08.020
  33. National Institute of Forest Science (NIFoS), 2011, Hydrological cycle in forest watershed, Research Report 11-14, National Institute of Forest Science, Seoul, Korea.
  34. National Institute of Forest Science (NIFoS), 2013, Standard manual for forest water resource investigation, Report 524, National Institute of Forest Science, Seoul, Korea.
  35. National Institute of Forest Science (NIFoS), 2019, Research on exploration of Gotjawal's value and sustainable utilization in Jejudo, Research Report 19-18, National Institute of Forest Science, Seoul, Korea.
  36. Neave, M., Abrahams, A. D., 2002, Vegetation influences on water yields from grassland and shrubland ecosystems in the Chihuahuan Desert, Earth Surf Process Landf., 27, 1011-1020. https://doi.org/10.1002/esp.389
  37. Nulsen, R. A., Bligh, K. J., Baxter, I. N., Solin, E. J., Imrie, D. H., 1986, The fate of rainfall in a mallee and heath vegetated catchment in southern Western Australia, Austral Ecol., 11, 361-371. https://doi.org/10.1111/j.1442-9993.1986.tb01406.x
  38. Owen, M. K., Lyons, R. K., Alejandro, C. L., 2006, Rainfall partitioning within semiarid juniper communities: Effects of event size and canopy cover, Hydrol. Process., 20, 3179-3189. https://doi.org/10.1002/hyp.6326
  39. Park, J. B., Kang, B. R., Koh, G. W., Kim, G. P., 2014, Geological characteristics of Gotjawal terrain in Jeju Island, J. Geol. Soc. Korea., 50, 431-440.
  40. Park. Y. H., 1988, Jeju dialect Research, Report 376, Korean University Ethnic Culture Research Institute, Seoul.
  41. Pathak, P. C., Pandey, A. N., Singh, J. S., 1985, Apportionment of rainfall in central Himalayan forests (India), J. Hydrol., 76, 319-332. https://doi.org/10.1016/0022-1694(85)90140-4
  42. Prebble, R. E., Stirk, G. B., 1980, Throughfall and stemflow on silverleaf ironbark (Eucalyptus melanophloia) trees, Aust. J. Eco., 5, 419-427. https://doi.org/10.1111/j.1442-9993.1980.tb01266.x
  43. Pressland, A. J., 1973, Rainfall partitioning by an arid woodland (Acacia aneura F. Muell.) in south-western Queensland, Aust. J. Bot., 21, 235-245. https://doi.org/10.1071/BT9730235
  44. Pressland, A. J., 1976, Soil moisture redistribution as affected by throughfall and stemflow in an arid zone shrub community, Aust. J. Bot., 24, 641-649. https://doi.org/10.1071/BT9760641
  45. Robertson, S. M. C., Hornung, M., Kennedy V. H., 2000, Water chemistry of throughfall and soil water under four tree species at Gisburn, northwest England, before and after felling, For. Ecol. Manag., 129, 101-117. https://doi.org/10.1016/S0378-1127(99)00156-5
  46. Rowe, L. K., 1983, Rainfall interception by an evergreen beech forest, Nelson, New Zealand, J. Hydrol., 66, 143-158. https://doi.org/10.1016/0022-1694(83)90182-8
  47. Sadeghi, S. M. M., Attarod, P., Van Stan, J. T., Pypker, T. G., 2016, The importance of considering rainfall partitioning in afforestation initiatives in semiarid climates: A comparison of common planted tree species in Tehran, Iran, Sci. Total Environ., 568, 845-855. https://doi.org/10.1016/j.scitotenv.2016.06.048
  48. Silva, I. C., Okumura, T., 1996, Throughfall, stemflow and interception loss in a mixed white oak forest (Quercus serrata Thunb.), J. For. Res., 1, 123-129. https://doi.org/10.1007/bf02348189
  49. Song. S. T., 2000., Distribution and lithology of the Aa rubble flows on Cheju Island, Korea, Ph.D. Dissertation, Pusan National University, Busan, Korea.
  50. Song, S. T., Yoon S., 2002, Lavas in Gotjawal Terrain, Jeju Island, Korea No. 1. Jocheon-Hamdeok Gotjawal Terrain, J. Geol. Soc. Korea., 38, 377-389.
  51. Suk, J. M., 1947, Jeju dialect collection, Seoqwipo Cultural Center, Seoqwipo, Korea. 
  52. Swaffer, B. A., Holland, K. L., Doody, T. M., Hutson, J., 2014, Rainfall partitioning, tree form and measurement scale: a comparison of two co-occurring, morphologically distinct tree species in a semi-arid environment, Ecohydrol., 7, 1331-1344.
  53. The Gotjawal Trust of Jeju, 2018, Report on the actual condition of business sites in Gotjawal, Jeju, Korea.
  54. Valente, F., David, J. S., Gash, J. H., 1997, Modelling interception loss for two sparse eucalypt and pine forests in central Portugal using reformulated Rutter and Gash analytical models, J. Hydrol., 190, 141-162. https://doi.org/10.1016/S0022-1694(96)03066-1
  55. Zhu, Y., Cheng, Z., Feng, K., Chen, Z., Cao, C., Huang, J., Ye, H., Gao, Y., 2022, Influencing factors for transpiration rate: A numerical simulation of an individual leaf system, Therm. Sci. Eng. Prog., 27, 101110.