DOI QR코드

DOI QR Code

Characterization of Prophages in Leuconostoc Derived from Kimchi and Genomic Analysis of the Induced Prophage in Leuconostoc lactis

  • Kim, Song-Hee (Department of Food Science and Biotechnology, College of BioNano Technology, Gachon University) ;
  • Park, Jong-Hyun (Department of Food Science and Biotechnology, College of BioNano Technology, Gachon University)
  • Received : 2021.10.27
  • Accepted : 2021.12.21
  • Published : 2022.03.28

Abstract

Leuconostoc has been used as a principal starter in natural kimchi fermentation, but limited research has been conducted on its phages. In this study, prophage distribution and characterization in kimchi-derived Leuconostoc strains were investigated, and phage induction was performed. Except for one strain, 16 Leuconostoc strains had at least one prophage region with questionable and incomplete regions, which comprised 0.5-6.0% of the bacterial genome. Based on major capsid protein analysis, ten intact prophages and an induced incomplete prophage of Leu. lactis CBA3626 belonged to the Siphoviridae family and were similar to Lc-Nu-like, sha1-like, phiMH1-like, and TPA_asm groups. Bacterial immunology genes, such as superinfection exclusion proteins and methylase, were found on several prophages. One prophage of Leu. lactis CBA3626 was induced using mitomycin C and was confirmed as belonging to the Siphoviridae family. Homology of the induced prophage with 21 reported prophages was not high (< 4%), and 47% identity was confirmed only with TPA_asm from Siphoviridae sp. isolate ct3pk4. Therefore, it is suggested that Leuconostoc from kimchi had diverse prophages with less than 6% genome proportion and some immunological genes. Interestingly, the induced prophage was very different from the reported prophages of other Leuconostoc species.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (Grant No. 2020R1F1A107000111) and Gachon University Research Fund of 2020 (GCU-202004510001).

References

  1. Jung JY, Lee SH, Kim JM, Park MS, Bae JW, Hahn Y, et al. 2011. Metagenomic analysis of kimchi, a traditional Korean fermented food. Appl. Environ. Microbiol. 77: 2264-2274. https://doi.org/10.1128/AEM.02157-10
  2. Kleppen HP, Holo H, Jeon SR, Nes IF, Yoon SS. 2012. Novel Podoviridae family bacteriophage infecting Weissella cibaria isolated from Kimchi. Appl. Environ. Microbiol. 78: 7299-7308. https://doi.org/10.1128/AEM.00031-12
  3. Lu Z, Perez-Diaz IM, Hayes JS, Breidt F. 2012. Bacteriophage ecology in a commercial cucumber fermentation. Appl. Environ. Microbiol. 78: 8571-8578. https://doi.org/10.1128/AEM.01914-12
  4. Park SJ, Chang JH, Cha SK, Moon GS. 2008. Microbiological analysis of dongchimi, Korean watery radish kimchi, at the early and mid-phase fermentation. Food Sci. Biotechnol. 17: 892-894.
  5. Lavelle K, Martinez I, Neve H, Lugli GA, Franz CMAP, Ventura M, et al. 2018. Biodiversity of Streptococcus thermophilus phages in global dairy fermentations. Viruses 10: 577. https://doi.org/10.3390/v10100577
  6. Oliveira J, Mahony J, Hanemaaijer L, Kouwen TRHM, van Sinderen D. 2018. Biodiversity of bacteriophages infecting Lactococcus lactis starter cultures. J. Dairy Sci. 101: 96-105. https://doi.org/10.3168/jds.2017-13403
  7. Yoon BH, Jang SH, Chang HI. 2011. Sequence analysis of the Lactobacillus temperate phage Sha1. Arch. Virol. 156: 1681-1684. https://doi.org/10.1007/s00705-011-1048-2
  8. Kong SJ, Park JH. 2020. Acid tolerance and morphological characteristics of five Weissella cibaria bacteriophages isolated from kimchi. Food Sci. Biotechnol. 29: 873-878. https://doi.org/10.1007/s10068-019-00723-4
  9. Park EJ, Kim KH, Abell GCJ, Kim MS, Roh SW, Bae JW. 2011. Metagenomic analysis of the viral communities in fermented foods. Appl. Environ. Microbiol. 77: 1284-1291. https://doi.org/10.1128/AEM.01859-10
  10. Park WJ, Kong SJ, Park JH. 2021. Kimchi bacteriophages of lactic acid bacteria: population, characteristics, and their role in watery kimchi. Food Sci. Biotechnol. 30: 949-957. https://doi.org/10.1007/s10068-021-00930-y
  11. Oh JY, Park JH. 2021. Isolation and characterization of bacteriophage infecting Lactobacillus plantarum KCCM 12116. Korean J. Food Sci. Technol. 53: 348-355. https://doi.org/10.9721/KJFST.2021.53.3.348
  12. Breitbart M, Rohwer F. 2005. Here a virus, there a virus, everywhere the same virus? Trends Microbiol. 13: 278-284. https://doi.org/10.1016/j.tim.2005.04.003
  13. Rohwer F. 2003. Global phage diversity. Cell 113: 141-141. https://doi.org/10.1016/S0092-8674(03)00276-9
  14. Raya RR, H'Bert E M. 2009. Isolation of phage via induction of lysogens. Methods Mol. Biol. 501: 23-32. https://doi.org/10.1007/978-1-60327-164-6_3
  15. Parsley LC, Consuegra EJ, Thomas SJ, Bhavsar J, Land AM, Bhuiyan NN, et al. 2010. Census of the viral metagenome within an activated sludge microbial assemblage. Appl. Environ. Microbiol. 76: 2673-2677. https://doi.org/10.1128/AEM.02520-09
  16. Weinbauer MG. 2004. Ecology of prokaryotic viruses. FEMS Microbiol. Rev. 28: 127-181. https://doi.org/10.1016/j.femsre.2003.08.001
  17. Casjens S. 2003. Prophages and bacterial genomics: what have we learned so far? Mol. Microbiol. 49: 277-300. https://doi.org/10.1046/j.1365-2958.2003.03580.x
  18. Fortier LC, Sekulovic O. 2013. Importance of prophages to evolution and virulence of bacterial pathogens. Virulence 4: 354-365. https://doi.org/10.4161/viru.24498
  19. Modi SR, Lee HH, Spina CS, Collins JJ. 2013. Antibiotic treatment expands the resistance reservoir and ecological network of the phage metagenome. Nature 499: 219-222. https://doi.org/10.1038/nature12212
  20. Fernandez L, Rodriguez A, Garcia P. 2018. Phage or foe: an insight into the impact of viral predation on microbial communities. ISME J. 12: 1171-1179. https://doi.org/10.1038/s41396-018-0049-5
  21. Wattam AR, Abraham D, Dalay O, Disz TL, Driscoll T, Gabbard JL, et al. 2014. PATRIC, the bacterial bioinformatics database and analysis resource. Nucleic Acids Res. 42: D581-D591. https://doi.org/10.1093/nar/gkt1099
  22. Arndt D, Grant JR, Marcu A, Sajed T, Pon A, Liang Y, et al. 2016. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res. 44: W16-W21. https://doi.org/10.1093/nar/gkw387
  23. Song W, Sun HX, Zhang C, Cheng L, Peng Y, Deng Z, et al. 2019. Prophage Hunter: an integrative hunting tool for active prophages. Nucleic Acids Res. 47: W74-W80. https://doi.org/10.1093/nar/gkz380
  24. Thompson JD, Gibson TJ, Higgins DG. 2002. Multiple sequence alignment using ClustalW and ClustalX. Curr. Protoc. Bioinformatics Chapter 2: Unit 2.3.
  25. Kumar S, Stecher G, Tamura K. 2016. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33: 1870-1874. https://doi.org/10.1093/molbev/msw054
  26. Kelleher P, Mahony J, Schweinlin K, Neve H, Franz CM, van Sinderen D. 2018. Assessing the functionality and genetic diversity of lactococcal prophages. Int. J. Food Microbiol. 272: 29-40. https://doi.org/10.1016/j.ijfoodmicro.2018.02.024
  27. Krogh A, Larsson B, von Heijne G, Sonnhammer ELL. 2001. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J. Mol. Biol. 305: 567-580. https://doi.org/10.1006/jmbi.2000.4315
  28. Johnson M, Zaretskaya I, Raytselis Y, Merezhuk Y, McGinnis S, Madden TL. 2008. NCBI BLAST: a better web interface. Nucleic Acids Res. 36: W5-9. https://doi.org/10.1093/nar/gkn201
  29. Park, DW, Kim SH, Park JH. 2022. Distribution and characterization of prophages in Lactobacillus plantarum derived from kimchi. Food Microbiol. 102: 103913. https://doi.org/10.1016/j.fm.2021.103913
  30. Ackermann H-W. 2009. Basic Phage Electron Microscopy, pp. 113-126. In Clokie MRJ, Kropinski AM (eds.), Bacteriophages: Methods and Protocols, Volume 1: Isolation, Characterization, and Interactions. Humana Press, Totowa, NJ, USA.
  31. Sullivan MJ, Petty NK, Beatson SA. 2011. Easyfig: a genome comparison visualizer. Bioinformatics 27: 1009-1010. https://doi.org/10.1093/bioinformatics/btr039
  32. Canchaya C, Proux C, Fournous G, Bruttin A, Brussow H. 2003. Prophage genomics. Microbiol. Mol. Biol. Rev. 67: 238-276. https://doi.org/10.1128/MMBR.67.2.238-276.2003
  33. Feyereisen M, Mahony J, Neve H, Franz C, Noben JP, O'Sullivan T, et al. 2019. Biodiversity and classification of phages infecting Lactobacillus brevis. Front. Microbiol. 10: 2396. https://doi.org/10.3389/fmicb.2019.02396
  34. Wang X, Wood TK. 2016. Cryptic prophages as targets for drug development. Drug Resist. Update 27: 30-38. https://doi.org/10.1016/j.drup.2016.06.001
  35. Tuohimaa A, Riipinen KA, Brandt K, Alatossava T. 2006. The genome of the virulent phage Lc-Nu of probiotic Lactobacillus rhamnosus, and comparative genomics with Lactobacillus casei phages. Arch. Virol. 151: 947-965. https://doi.org/10.1007/s00705-005-0672-0
  36. Yoon BH, Jang SH, Chang HI. 2011. Sequence analysis of the Lactobacillus temperate phage Sha1. Arch. Virol. 156: 1681-1684. https://doi.org/10.1007/s00705-011-1048-2
  37. Tisza MJ, Buck CB. 2021. A catalog of tens of thousands of viruses from human metagenomes reveals hidden associations with chronic diseases. Proc. Natl. Acad. Sci. USA 118: e2023202118. https://doi.org/10.1073/pnas.2023202118
  38. Hendrix RW. 2005. Bacteriophage HK97: Assembly of the capsid and evolutionary connections. Adv. Virus Res. 64: 1-14. https://doi.org/10.1016/S0065-3527(05)64001-8
  39. Barrangou R, Yoon SS, Breidt F, Fleming HP, Klaenhammer TR. 2002. Characterization of six Leuconostoc fallax bacteriophages isolated from an industrial sauerkraut fermentation. Appl. Environ. Microbiol. 68: 5452-5458. https://doi.org/10.1128/AEM.68.11.5452-5458.2002
  40. Kot W, Neve H, Heller KJ, Vogensen FK. 2014. Bacteriophages of Leuconostoc, Oenococcus, and Weissella. Front. Microbiol. 5: 186. https://doi.org/10.3389/fmicb.2014.00186
  41. Lee S, Park JH. 2021. Characteristics on host specificity, infection, and temperature stability of Weissella phages from watery kimchi. Food Sci. Biotechnol. 30: 843-851. https://doi.org/10.1007/s10068-021-00920-0
  42. Rostol JT, Marraffini L. 2019. (Ph)ighting Phages: how bacteria resist their parasites. Cell Host Microbe 25: 184-194. https://doi.org/10.1016/j.chom.2019.01.009
  43. Murphy J, Mahony J, Ainsworth S, Nauta A, van Sinderen D. 2013. Bacteriophage orphan DNA methyltransferases: insights from their bacterial origin, function, and occurrence. Appl. Environ. Microbiol. 79: 7547-7555. https://doi.org/10.1128/AEM.02229-13
  44. Mahony J, McGrath S, Fitzgerald GF, van Sinderen D. 2008. Identification and characterization of lactococcal-prophage-carried superinfection exclusion genes. Appl. Environ. Microbiol. 74: 6206-6215. https://doi.org/10.1128/AEM.01053-08
  45. da Silva Duarte V, Giaretta S, Campanaro S, Treu L, Armani A, Tarrah A, et al. 2018. A Cryptic non-inducible prophage confers phage-immunity on the Streptococcus thermophilus M17PTZA496. Viruses 11: 7. https://doi.org/10.3390/v11010007
  46. Oliveira J, Mahony J, Hanemaaijer L, Kouwen TRHM, Neve H, MacSharry J, et al. 2017. Detecting Lactococcus lactis prophages by mitomycin C-mediated induction coupled to flow cytometry analysis. Front. Microbiol. 8: 1343. https://doi.org/10.3389/fmicb.2017.01343
  47. Muhammed MK, Olsen ML, Kot W, Neve H, Castro-Mejia JL, Janzen T, et al. 2018. Investigation of the bacteriophage community in induced lysates of undefined mesophilic mixed-strain DL-cultures using classical and metagenomic approaches. Int. J. Food Microbiol. 272: 61-72. https://doi.org/10.1016/j.ijfoodmicro.2018.02.012
  48. Jang SH, Hwang MH, Chang HI. 2010. Complete genome sequence of Phi MH1, a Leuconostoc temperate phage. Arch. Virol. 155: 1883-1885. https://doi.org/10.1007/s00705-010-0799-5
  49. Kot W, Hansen LH, Neve H, Hammer K, Jacobsen S, Pedersen PD, et al. 2014. Sequence and comparative analysis of Leuconostoc dairy bacteriophages. Int. J. Food Microbiol. 176: 29-37. https://doi.org/10.1016/j.ijfoodmicro.2014.01.019