DOI QR코드

DOI QR Code

텍스트마이닝을 활용한 핀테크 및 디지털 금융 서비스 트렌드 분석

Trend Analysis of FinTech and Digital Financial Services using Text Mining

  • 김도희 (숙명여자대학교 빅데이터분석융합학) ;
  • 김민정 (숙명여자대학교 소비자경제학과)
  • Kim, Do-Hee (Dept. of Big Data Analysis Convergence, Sookmyung Women's University) ;
  • Kim, Min-Jeong (Dept. of Consumer Economics, Sookmyung Women's University)
  • 투고 : 2021.12.03
  • 심사 : 2022.03.20
  • 발행 : 2022.03.28

초록

본 연구는 핀테크를 중심으로 국내 디지털 금융 서비스 시장의 트렌드를 파악하고자 신문기사와 트위터 데이터를 대상으로 텍스트마이닝 기법을 사용하여 분석을 진행하였다. 핀테크 시장의 성장 과정에 있어서 간편결제 서비스 도입, 인터넷전문은행 출범, 데이터 3법 개정안 통과, 마이데이터 사업 신청 등 중요하게 작용을 한 4가지 시점을 기준으로 빈도분석을 수행하여 핵심 키워드 간의 차이를 살펴보았다. 또한 핀테크 선도 국가인 중국·미국과 미래 키워드를 핀테크 키워드와 결합한 빈도분석 결과를 통해 세계 시장 속에서 국내 핀테크 산업의 현 위치와 미래 시장 전망을 예측하였다. 마지막으로 트위터 트윗을 대상으로 감성분석을 진행하여 핀테크 서비스에 대한 소비자의 기대와 우려를 정량화하였다. 따라서 본 연구는 금융 생태계 변화 과정을 살펴보고, 분석 결과를 종합함으로써 정부와 기업이 향후 핀테크 시장 발전에 있어서 활용할 수 있는 전략적 방향성 및 대응 전략을 제시한 점에서 의의가 있다.

Focusing on FinTech keywords, this study is analyzing newspaper articles and Twitter data by using text mining methodology in order to understand trends in the industry of domestic digital financial service. In the growth of FinTech lifecycle, the frequency analysis has been performed by four important points: Mobile Payment Service, Internet Primary Bank, Data 3 Act, MyData Businesses. Utilizing frequency analysis, which combines the keywords 'China', 'USA', and 'Future' with the 'FinTech', has been predicting the FinTech industry regarding of the current and future position. Next, sentiment analysis was conducted on Twitter to quantify consumers' expectations and concerns about FinTech services. Therefore, this study is able to share meaningful perspective in that it presented strategic directions that the government and companies can use to understanding future FinTech market by combining frequency analysis and sentiment analysis.

키워드

참고문헌

  1. M. H. Lee. (2018). A Study on Media Attitude of 4th Industrial Revolution and Security : Analysis of Relationship between Subject Words. Journal of Korean Public Police and Security Studies, 15(3), 233-252. DOI : 10.25023/kapsa.15.3.2018.11.233
  2. J. B. Son, D. J. Ryu & C. J. Park. (2019). Korea's FinTech Industry: Current Status and Suggestions for Sustainable Development. The Korean Journal of Financial Engineering, 18(2), 119-150. DOI : 10.35527/kfedoi.2019.18.2.005
  3. J. S. Kim. (2020). Alibaba, Leading the Fourth Industrial Revolution: FinTech and New Retail Perspectives. Korea Business Review, 24(2), 73-99. DOI : 10.17287/kbr.2020.24.2.73
  4. X. Lee, H. W. Lim, H. R. Yeo & H. S. Hwang. (2021). Text Mining of Online News, Social Media, and Consumer Review on Artificial Intelligence Service. Family and Environment Research, 59(1), 23-43. DOI : 10.6115/fer.2021.003
  5. S. J. Chung & S. I. Kim. (2020). A Study on the User Experience of Mobile Fintech Service in Z Generation - Focused on KakaoPay and Toss - . Journal of Digital Convergence, 18(1), 315-320. DOI : 10.14400/JDC.2020.18.1.315
  6. J. S. Kim & I. G. Han. (2020). The Strategy and Key Success Factors of Fintech Business for SNS Enterprise: Cases of Tencent, Naver Line and Kakao. Korea Business Review, 24(4), 1-19. DOI : 10.17287/kbr.2020.24.4.1
  7. M. S. Suh & D. H. Kim. (2019). A Study on the Changing Direction of FinTech Service Model based on Big Data. The e-Business Studies, 20(2), 195-213. DOI : 10.20462/TeBS.2019.4.20.2.195
  8. J. H. Lee. (2020). A Fintech's Historical Background and Success Factors. Journal of Payment and Settlement, 12(2), 253-276. DOI : 10.22898/kpsakr.2020.12.2.253
  9. H. W. Kim & S. I. Kim. (2020). A study on User experience of Fintech Application Service -Focused on Toss and Kakaobank-. Journal of Digital Convergence, 18(1), 287-293. DOI : 10.14400/JDC.2020.18.1.287
  10. L. J. Cui. (2021). A Comparative Study on Fintech in the United States, China, and Republic of Korea in the Fourth Industrial Revolution. Asian Trade Risk Management, 5(1), 1-23. DOI : 10.221142/atrm.2021.5.1.1
  11. S. M. Jeon & D. H. Park. (2020). An Exploratory Study on Fintech Regulations and Start-ups: Focusing on the US, China, and Korea Cases. Asia-Pacific Journal of Business Venturing and Entrepreneurship, 15(1), 45-57. DOI : 10.16972/apjbve.15.1.202002.45
  12. T. K. Kim, H. R. Choi & H. C. Lee. (2016). A Study on the Research Trends in Fintech using Topic Modeling. Journal of the Korea Academia-Industrial cooperation Society, 17(11), 670-681. DOI : 10.5762/KAIS.2016.17.11.670
  13. M. G. Park, B. M. Jeon, J. W. Kim & Y. J. Geum. (2021). Exploring Potential Application Industry for Fintech Technology by Expanding its Terminology: Network Analysis and Topic Modelling Approach. The Journal of Society for e-Business Studies, 26(1), 1-28. DOI : 10.7838/jsebs.2021.26.1.001
  14. A. L. Son, W. S. Shin & Z. K. Lee. (2020). An Analysis of Key Elements for FinTech Companies Based on Text Mining: From the User's Review. The Journal of Information Systems, 29(4), 137-151. DOI : 10.5859/KAIS.2020.29.4.137
  15. J. K. An, S. H. Lee, E. H. An & H. W. Kim. (2016). Fintech Trends and Mobile Payment Service Anlaysis in Korea: Application of Text Mining Techniques. Informatization Policy, 23(3), 26-42. DOI : 10.22693/NIAIP.2016.23.3.026
  16. M. J. Kim. (2020). Analyzing the Trend of Wearable Keywords using Text-mining Methodology. Journal of Digital Convergence, 18(9), 181-190. DOI : 10.14400/JDC.2020.18.9.181
  17. P. S. Shin. (2020). Emotional Analysis System for Social Media Using Sentiment Dictionary with Newly-Created Words. Journal of the Korea Society of Computer and Information, 25(4), 133-140. DOI : 10.9708/jksci.2020.25.04.133
  18. K. H. Kim. (2020). Predicting Korean Election Using Sentiment Analysis of Online Portal Comments. Master's Thesis. Korea University. Seoul.
  19. C. S. Choi & Y. H. Im. (2021) .Sentiment analysis as a research method on partisanship in the presidential coverage. Korean Journal of Journalism & Communication Studies, 65(1), 35-70. DOI : 10.20879/kjjcs.2021.65.1.035