DOI QR코드

DOI QR Code

Efficient IoT data processing techniques based on deep learning for Edge Network Environments

에지 네트워크 환경을 위한 딥 러닝 기반의 효율적인 IoT 데이터 처리 기법

  • Jeong, Yoon-Su (Division of Information and Communication Convergence Engineering, Mokwon University)
  • 정윤수 (목원대학교 정보통신융합공학부)
  • Received : 2021.12.21
  • Accepted : 2022.03.20
  • Published : 2022.03.28

Abstract

As IoT devices are used in various ways in an edge network environment, multiple studies are being conducted that utilizes the information collected from IoT devices in various applications. However, it is not easy to apply accurate IoT data immediately as IoT data collected according to network environment (interference, interference, etc.) are frequently missed or error occurs. In order to minimize mistakes in IoT data collected in an edge network environment, this paper proposes a management technique that ensures the reliability of IoT data by randomly generating signature values of IoT data and allocating only Security Information (SI) values to IoT data in bit form. The proposed technique binds IoT data into a blockchain by applying multiple hash chains to asymmetrically link and process data collected from IoT devices. In this case, the blockchainized IoT data uses a probability function to which a weight is applied according to a correlation index based on deep learning. In addition, the proposed technique can expand and operate grouped IoT data into an n-layer structure to lower the integrity and processing cost of IoT data.

에지 네트워크 환경에서 IoT 장치가 다양하게 활용되면서 IoT 장치에서 수집되는 정보들을 여러 응용 분야에서 활용하는 연구들이 다양하게 진행되고 있다. 그러나, 네트워크 환경(간섭, 전파방해 등)에 따라 수집되는 IoT 데이터들이 누락 또는 오류가 발생하는 상황이 빈번해지면서 정확한 IoT 데이터들을 바로 적용하기가 쉽지 않은 상황이다. 본 논문에서는 에지 네트워크 환경에서 수집되는 IoT 데이터들의 오류를 줄이기 위해서 IoT 데이터의 서명 값을 랜덤하게 생성하여 비트 형태로 보안 정보(Security Information, SI) 값만을 IoT 데이터들에 각각 할당함으로써 IoT 데이터의 신뢰성을 보장하는 관리 기법을 제안한다. 제안 기법은 IoT 장치로부터 수집되는 데이터들을 비대칭적으로 서로 연계 처리하도록 다중 해쉬 체인을 적용하여 IoT 데이터를 블록체인으로 묶는다. 이때, 블록 체인화된 IoT 데이터들은 딥러닝 기반으로 상관관계 지수에 따라 가중치를 적용한 확률 함수를 사용한다. 또한, IoT 데이터의 무결성과 처리 비용을 낮추기 위해서 제안 기법은 그룹화된 IoT 데이터를 n-계층 구조로 확장 운영 가능하다.

Keywords

References

  1. Q. Liu, L. Cheng, T. Ozcelebi, J. Murphy & J. Lukkien, (2019). Deep Reinforcement Learning for IoT Network Dynamic Clustering in Edge Computing. Proceedings of the 19th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID), pp. 600-603.
  2. H. Ye & G. Y. Li, (2018). Deep reinforcement learning for resource allocation in v2v communications. Proceedings of the 2018 IEEE International Conference on Communications (ICC). IEEE, pp. 1-6.
  3. X. Sun & N. Ansari, (2016). EdgeIoT: Mobile edge computing for the internet of things. IEEE Communications Magazine, vol. 54, no. 12, pp. 22-29. https://doi.org/10.1109/MCOM.2016.1600492CM
  4. T. Taleb, S. Dutta, A. Ksentini, M. Iqbal & H. Flinck, (2017). Mobile edge computing potential in making cities smarter. IEEE Communications Magazine, vol. 55, no. 3, pp. 38-43. https://doi.org/10.1109/MCOM.2017.1600249CM
  5. H. El-Sayed, S. Sankar, M. Prasad, D. Puthal, A. Gupta, M. Mohanty & C. T. Lin, (2018). Edge of things: The big picture on the integration of edge, IoT and the cloud in a distributed computing environment. IEEE Access, vol. 6, pp. 1706-1717. https://doi.org/10.1109/access.2017.2780087
  6. B. Tang, Z. Chen, G. Hefferman, S. Pei, T. Wei, H. He & Q. Yang, (2017). Incorporating intelligence in fog computing for big data analysis in smart cities. IEEE Transactions on Industrial Informatics, vol. 13, no. 5, pp. 2140-2150. https://doi.org/10.1109/TII.2017.2679740
  7. Z. Hao, E. Novak, S. Yi & Q. Li, (2017). Challenges and software architecture for fog computing. IEEE Internet Computing, vol. 21, no. 2, pp. 44-53. https://doi.org/10.1109/MIC.2017.26
  8. Y. LeCun, Y. Bengio & G. Hinton, (2015). Deep learning. Nature, vol. 521, no. 7553, pp. 436-444. https://doi.org/10.1038/nature14539
  9. H. El-Sayed, S. Sankar, M. Prasad, D. Puthal, A. Gupta, M. Mohanty & C. T. Lin, (2018). Edge of things: The big picture on the integration of edge, IoT and the cloud in a distributed computing environment. IEEE Access, vol. 6, pp. 1706-1717. https://doi.org/10.1109/access.2017.2780087
  10. A. Sinaeepourfard, J. Garcia, X. Masip-Bruin & E. Marin-Tordera, (2018). Data preservation through fog-to-cloud (f2c) data management in smart cities. Proceedings of the IEEE 2nd International Conference on Fog and Edge Computing, pp. 1-9.
  11. Y. Jararweh, A. Doulat, O. AlQudah, E. Ahmed, M. Al-Ayyoub & E. Benkhelifa, (2016). The future of mobile cloud computing: integrating cloudlets and mobile edge computing. Proceedings of the 23rd International Conference on Telecommunications, pp. 1-5.
  12. L. Li, K. Ota & M. Dong, (2018). Deep learning for smart industry: Efficient manufacture inspection system with fog computing. IEEE Transactions on Industrial Informatics, vol. 14, no. 10, pp. 4665-4673. https://doi.org/10.1109/tii.2018.2842821
  13. G. G. Jia, G. G. Han, A. Li & J. Du, (2018). Ssl: Smart street lamp based on fog computing for smarter cities. IEEE Transactions on Industrial Informatics, vol. 14, no. 11, pp. 4995-5004. https://doi.org/10.1109/tii.2018.2857918
  14. J. He, J. Wei, K. Chen, Z. Tang, Y. Zhou & Y. Zhang, (2017). Multi-tier fog computing with large-scale IoT data analytics for smart cities. IEEE Internet Things Journal, vol. 5, no. 5, pp. 677-686.
  15. X. Wang, Z. Ning & L. Wang, (2018). Offloading in internet of vehicles: A fog-enabled real-time traffic management system. IEEE Transactions on Industrial Informatics, vol. 14, no. 10, pp. 4568-4578. https://doi.org/10.1109/tii.2018.2816590