DOI QR코드

DOI QR Code

Engineered nanoparticles in wastewater systems: Effect of organic size on the fate of nanoparticles

  • Choi, Soohoon (Department of Civil and Environmental engineering, University of Delaware) ;
  • Chen, Ching-Lung (Department of Civil and Environmental engineering, University of Delaware) ;
  • Johnston, Murray V. (Department of Chemistry and Biochemistry, University of Delaware) ;
  • Wang, Gen Suh (Institute of Environmental Health, National Taiwan University) ;
  • Huang, Chin-Pao (Department of Civil and Environmental engineering, University of Delaware)
  • 투고 : 2021.05.31
  • 심사 : 2021.09.03
  • 발행 : 2022.01.25

초록

To verify the fate and transport of engineered nanoparticles (ENP), it is essential to understand its interactions with organic matter. Previous research has shown that dissolved organic matter (DOM) can increase particle stability through steric repulsion. However, the majority of the research has been focused on model organic matter such as humic or fulvic acids, lacking the understanding of organic matter found in field conditions. In the current study, organic matter was sampled from wastewater treatment plants to verify the stability of engineered nanoparticles (ENP) under field conditions. To understand how different types of organic matter may affect the fate of ENP, wastewater was sampled and separated based on their size; as small organic particular matter (SOPM) and large organic particular matter (LOPM), and dissolved organic matter (DOM). Each size fraction of organic matter was tested to verify their effects on nano-zinc oxide (nZnO) and nano-titanium oxide (nTiO2) stability. For DOM, critical coagulation concentration (CCC) experiments were conducted, while sorption experiments were conducted for organic particulates. Results showed that under field conditions, the surface charge of the particles did not influence the stability. On the contrary, surface charge of the particles influenced the amount of sorption onto particulate forms of organic matter. Results of the current research show how the size of organic matter influences the fate and transport of different ENPs under field conditions.

키워드

과제정보

We thank Dr. Rovshan Madmudov and Mr. Michael Davidson for assistance with the ICP throughout the entire research. This work was supported by a STAR grant R83485901 by the US Environmental Protection Agency. The work was also supported by Chungnma National University grant 2019-0905-01. Last but not the least, we wish to thank our project managers, Dr. Nora Savage and Dr. Mitch Lasat for their interest and support of this research.

참고문헌

  1. Aboubaraka, A.E., Aboelfetoh, E.F. and Ebeid, E.Z.M., (2017), "Coagulation effectiveness of graphene oxide for the removal of turbidity from raw surface water", Chemosphere, 181, 738-746. https://doi.org/10.1016/j.chemosphere.2017.04.137.
  2. Adams, L.K., Lyon, D.Y. and Alvarez, P.J.J., (2006), "Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions", Water Res., 40(19), 3527-3532. https://doi.org/10.1016/j.watres.2006.08.004.
  3. Benn, T., Cavanagh, B., Hristovski, K., Posner, J.D. and Westerhoff, P. (2010), "The release of nanosilver from consumer products used in the home", J. Environ. Qual., 39(6), 1875. https://doi.org/10.2134/jeq2009.0363.
  4. Benn, T.M. and Westerhoff, P. (2008), "Nanoparticle silver released into water from commercially available sock fabrics", Environ. Sci. Technol., 42(11), 4133-4139. https://doi.org/10.1021/es7032718.
  5. Bolyard, S.C., Reinhart, D.R. and Santra, S. (2013), "Behavior of engineered nanoparticles in land fill leachate", Environ. Sci. Technol., 47(15), 8114. https://doi.org/10.1021/es305175e.
  6. Bundschuh, M., Filser, J., Luderwald, S., McKee, M.S., Metreveli, G., Schaumann, G.E., Schulz, R. and Wagner, S. (2018), "Nanoparticles in the environment: where do we come from, where do we go to?", Environ. Sci. Eur., 30(1), 1-17. https://doi.org/10.1186/s12302-018-0132-6.
  7. Chang, H.H., Cheng, T.J., Huang, C.P. and Wang, G.S. (2017), "Characterization of titanium dioxide nanoparticle removal in simulated drinking water treatment processes", Sci. Total Environ., 601-602, 886-894. https://doi.org/10.1016/j.scitotenv.2017.05.228.
  8. Chen, K.L. and Elimelech, M., (2006), "Aggregation and deposition kinetics of fullerene (C-60) nanoparticles", Langmuir, 22(18), 10994-11001. https://doi.org/10.1021/la062072v.
  9. Chen, K.L. and Elimelech, M., (2007), "Influence of humic acid on the aggregation kinetics of fullerene (C60) nanoparticles in monovalent and divalent electrolyte solutions", J. Colloid Interf. Sci., 309(1), 126-134. https://doi.org/10.1016/j.jcis.2007.01.074.
  10. Chen, K.L., Mylon, S.E. and Elimelech, M. (2007), "Enhanced aggregation of alginate-coated iron oxide (Hematite) nanoparticles in the presence of calcium, strontium, and barium cations enhanced aggregation of alginate-coated iron oxide (Hematite) nanoparticles in the presence of calcium, strontium", Society, 17(6), 5920-5928. https://doi.org/10.1021/la063744k.
  11. Chowdhury, I., Duch, M.C., Mansukhani, N.D., Hersam, M.C. and Bouchard, D. (2013) "Colloidal properties and stability of graphene oxide nanomaterials in the aquatic environment", Environ. Sci. Technol., 47(12). https://doi.org/10.1021/es400483k.
  12. Chowdhury, I., Cwiertny, D.M. and Walker, S.L. (2012), "Combined factors influencing the aggregation and deposition of nano-TiO2 in the presence of humic acid and bacteria", Environ. Sci. Technol., 46(13), 6968-6976. https://doi.org/10.1021/es2034747.
  13. Debia, M., Bakhiyi, B., Ostiguy, C., Verbeek, J.H., Brouwer, D.H. and Murashov, V. (2016), "A systematic review of reported exposure to engineered nanomaterials", Annals of Occup. Hyg., 60(8), 916-935. https://doi.org/10.1093/annweh/wxy048.
  14. Duch, M.C., Budinger, G.R.S., Liang, Y.T., Soberanes, S., Urich, D., Chiarella, S.E., Campochiaro, L.A., Gonzalez, A., Chandel, N.S., Hersam, M.C. and Mutlu, G.M. (2011), "Minimizing oxidation and stable nanoscale dispersion improves the biocompatibility of graphene in the lung", Nano Lett., 11(12), 5201-5207. https://doi.org/10.1021/nl202515a.
  15. Erhayem, M. and Sohn, M. (2014), "Stability studies for titanium dioxide nanoparticles upon adsorption of Suwannee River humic and fulvic acids and natural organic matter", Sci. Total Environ., 468-469, 249-257. https://doi.org/10.1016/j.scitotenv.2013.08.038.
  16. French, R.A., Jacobson, A.R., Kim, B., Isley, S.L., Penn, R.L. and Baveye, P.C. (2009), "Influence of ionic strength, pH, andcation valence on aggregation kinetics of titanium dioxide nanoparticles", Environ. Sci. Technol., 43(5), 1354-1359. https://doi.org/10.1021/es802628n.
  17. Gambinossi, F., Mylon, S.E. and Ferri, J.K. (2015) "Aggregation kinetics and colloidal stability of functionalized nanoparticles", Adv. Colloid Interf. Sci., 222, 332-349. https://doi.org/10.1016/j.cis.2014.07.015.
  18. Gora, S.L. and Andrews, S.A. (2017), "Adsorption of natural organic matter and disinfection byproduct precursors from surface water on TiO2 Nanoparticles: pH effects, isotherm modelling and implications for using TiO2 for drinking water treatment", Chemosphere., 174, 363-370. https://doi.org/10.1016/j.chemosphere.2017.01.125.
  19. Hansen, F.S. Heggelund, L.R., Besora, P.R., Mackevica, A., Boldrina, A. and Bauna, A. (2016), "Nanoproducts - What is actually available to European consumers?", Environ. Sci. Nano., 3(1), 169-180. https://doi.org/10.1039/C5EN00182J.
  20. Illes, E. and Tombacz, E. (2006), "The effect of humic acid adsorption on pH-dependent surface charging and aggregation of magnetite nanoparticles", J. Colloid Interf. Sci., 295(1), 115-123. https://doi.org/10.1016/j.jcis.2005.08.003.
  21. Jiang, Y., Raliya, R., Fortner, J.D., Biswas, P. (2016), "Graphene oxides in water: Correlating morphology and surface chemistry with aggregation behavior." Environ. Sci. Technol., 50(13), 6964-6973. https://doi.org/10.1021/acs.est.6b00810.
  22. Kaegi, R., Ulrich, A., Sinnet, B., Vonbank, R., Wichser, A., Zuleeg, S., Simmler, H., Brunner, S., Vonmont, H., Burkhardt, M. and Boller, M. (2008), "Synthetic TiO2 nanoparticle emission from exterior facades into the aquatic environment", Environ. Pollut., 156(2), 233-239. https://doi.org/10.1016/j.envpol.2008.08.004.
  23. Keller, A.A., Wang, H., Zhou, D., Lenihan, H. S., Cherr, G., Cardinale, B.J., Miller, R., and Ji, Z. (2010), "Stability and aggregation of metal oxide nanoparticles in natural aqueous matrices", Environ. Sci. Technol., 44(6), 1962-1967. https://doi.org/10.1021/es902987d.
  24. Li, K. and Chen, Y. (2012), "Effect of natural organic matter on the aggregation kinetics of CeO2 nanoparticles in KCl and CaCl2 solutions: Measurements and modeling", J. Hazard. Mater., 209-210, 264-270. https://doi.org/10.1016/j.jhazmat.2012.01.013.
  25. Li, M. and Huang, C.P. (2010), "Stability of oxidized single-walled carbon nanotubes in the presence of simple electrolytes and humic acid", Carbon., 48(15), 4527-4534. https://doi.org/10.1016/j.carbon.2010.08.032.
  26. Liao, P., Li, W., Wang, D., Jiang, Y., Pan, C., Fortner, J.D. and Yuan, S. (2017), "Effect of reduced humic acid on the transport of ferrihydrite nanoparticles under anoxic conditions", Water Res., 109, 347-357. https://doi.org/10.1016/j.watres.2016.11.069.
  27. Miao, L., Wang, C. and Xu, Y. (2016), "Effect of alginate on the aggregation kinetics of copper oxide nanoparticles (CuO NPs): bridging interaction and hetero-aggregation induced by Ca2+", Environ. Sci. Pollut. Res., 23(12), 11611-11619. https://doi.org/10.1007/s11356-016-6358-1.
  28. Mukha, I.P., Eremenko, A.M., Smirnova, N.P., Mikhienkova, A.I., Korchak, G.I., Gorchev, V.F. and Chunikhin, A.I. (2013), "Antimicrobial activity of stable silver nanoparticles of a certain size", Appl. Biochem. Microbiol., 49(2), 199-206. https://doi.org/10.1134/S0003683813020117.
  29. Nicolosi, V., Vrbanic, D., Mrzel, A., McCauley, J., O'Flaherty, S., McGuinness, C., Compagnini, G., Mihailovic, D., Blau, W.J. and Coleman, J.N. (2005), "Solubility of Mo6S4.5I4.5 nanowires in common solvents: A sedimentation study", J. Phys. Chem. B, 109(15), 7124-7133. https://doi.org/10.1021/jp045166r.
  30. Nowack, B., Krug, H. and Height, M. (2011), "120 Years of nanosilver history: Implications for policy makers", Environ. Sci. Technol., 45(7), 3189. https://doi.org/10.1021/es200435m.
  31. Park, H.J., Kim H.Y., Cha, S., Ahn, C.H., Roh, J., Park, S., Kim, S., Choi, K., Yi, J., Kim, Y. and Yoon, J. (2013), "Removal characteristics of engineered nanoparticles by activated sludge", Chemosphere, 92(5), 524-528. https://doi.org/10.1016/j.chemosphere.2013.03.020.
  32. Petersen, E.J., Zhang, L., Mattison, N.T., O'Carroll, D.M., Whelton, A.J., Uddin, N., Nguyen, T., Huang, Q., Henry, T.B., Holbrook, R.D. and Chen, K.L. (2011), "Potential release pathways, environmental fate, and ecological risks of carbon nanotubes", Environ. Sci. Technol., 45(23), 9837. https://doi.org/10.1021/es201579y.
  33. Sani-Kast, N. Labille, J., Ollivier, P., Slomberg, D., Hungerbuhler, K. and Scheringer, M. (2017), "A network perspective reveals decreasing material diversity in studies on nanoparticle interactions with dissolved organic matter", Proceedings of the National Academy of Sciences, 114(10), E1756-E1765. https://doi.org/10.1073/pnas.1608106114.
  34. Shih, Y.H., Liu, W.S. and Su, Y.F. (2012), "Aggregation of stabilized TiO2 nanoparticle suspensions in the presence of inorganic ions", Environ. Toxicol. Chem., 31(8), 1693-1698. https://doi.org/10.1002/etc.1898.
  35. Sousa, V.S., Corniciuc, C. and Ribau Teixeira, M. (2017), "The effect of TiO2nanoparticles removal on drinking water quality produced by conventional treatment C/F/S", Water Res., 109, 1-12. https://doi.org/10.1016/j.watres.2016.11.030.
  36. Sun, T.Y., Bornhoft, N.A., Hungerbuhler, K. and Nowack, B. (2016), "Dynamic probabilistic modeling of environmental emissions of engineered nanomaterials", Environ. Sci. Technol., 50(9), 4701-4711. https://doi.org/10.1021/acs.est.5b05828.
  37. Thio, J.R., Zhou, D. and Keller, A.A. (2011), "Influence of natural organic matter on the aggregation and deposition of titanium dioxide nanoparticles", J. Hazard. Mater., 189(1-2), 556-563. https://doi.org/10.1016/j.jhazmat.2011.02.072.
  38. Muller, T.J.J., Bunz, U.H.F. (2007), Functional Organic Materials: Syntheses, Strategies and Applications, John Wiley & Sons, Morlenbach, Germany.
  39. Wagener, S., Dommershausen, N., Jungnickel, H., Laux, P., Mitrano, D., Nowack, B., Schneider, G. and Luch, A. (2016), "Textile functionalization and its effects on the release of silver nanoparticles into artificial sweat", Environ. Sci. Technol., 50(11), 5927-5934. https://doi.org/10.1021/acs.est.5b06137.
  40. Wang, Y., Combe, C. and Clark, M.M. (2001), "The effects of pH and calcium on the diffusion coefficient of humic acid", J. Membr. Sci., 183(1), 49-60. https://doi.org/10.1016/S0376-7388(00)00555-X.
  41. Weir, A. Westerhoff, P., Fabricius, L., Hristovski, K. and Goetz, N.V. (2012), "Titanium dioxide nanoparticles in food and personal care products", Environ. Sci. Technol., 46(4), 2242-2250. https://doi.org/10.1021/es204168d.
  42. Windler, L., Lorenz, C., Goetz, N.V., Hungerbuhler, K., Amberg, M., Heuberger, M. and Nowack, B. (2012), "Release of titanium dioxide from textiles during washing", Environ. Sci. Technol., 46(15), 8181-8188. https://doi.org/10.1021/es301633b.
  43. Xu, J. and Li, X.Y. (2016), "Investigation of the effect of nanoparticle exposure on the flocculability of activated sludge using particle image velocimetry in combination with the extended DLVO analysis", Colloid Surfaces B, 143, 382-389. https://doi.org/10.1016/j.colsurfb.2016.03.062.
  44. Yuan, B., Pham, M. and Nguyen, T.H. (2008), "Deposition kinetics of bacteriophage MS2 on a silica surface coated with natural organic matter in a radial stagnation point flow cell", Environ. Sci. Technol., 42(20), 7628-7633. https://doi.org/10.1021/es801003s.
  45. Van Zanten, J.H. and Elimelech, M. (1992), "Determination of absolute coagulation rate constants by multiangle light scattering", J. Colloid Interf. Sci., 154(1), 1-7. https://doi.org/10.1016/0021-9797(92)90072-T.
  46. Zheng, X., Wu, R. and Chen, Y. (2011), "Effects of ZnO nanoparticles on wastewater biological nitrogen and phosphorus removal", Environ. Sci. Technol., 45(7), 2826-2832. https://doi.org/10.1021/es2000744.
  47. Zhou, D. and Keller, A.A. (2010), "Role of morphology in the aggregation kinetics of ZnO nanoparticles", Water Res., 44(9), 2948-2956. https://doi.org/10.1016/j.watres.2010.02.025.