과제정보
This study was funded by Dentofacial Deformities Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
참고문헌
- Baccetti T, Franchi L, McNamara Jr JA. The cervical vertebral maturation (CVM) method for the assessment of optimal treatment timing in dentofacial orthopedics. Semin Orthod 2005;11:119-29. https://doi.org/10.1053/j.sodo.2005.04.005
- Hunter CJ. The correlation of facial growth with body height and skeletal maturation at adolescence. Angle Orthod 1966;36:44-54.
- McNamara JA Jr, Franchi L. The cervical vertebral maturation method: a user's guide. Angle Orthod 2018;88:133-43. https://doi.org/10.2319/111517-787.1
- Franchi L, Baccetti T, De Toffol L, Polimeni A, Cozza P. Phases of the dentition for the assessment of skeletal maturity: a diagnostic performance study. Am J Orthod Dentofacial Orthop 2008;133:395-400; quiz 476.e1-2. https://doi.org/10.1016/j.ajodo.2006.02.040
- Flores-Mir C, Nebbe B, Major PW. Use of skeletal maturation based on hand-wrist radiographic analysis as a predictor of facial growth: a systematic review. Angle Orthod 2004;74:118-24.
- Zhao XG, Lin J, Jiang JH, Wang Q, Ng SH. Validity and reliability of a method for assessment of cervical vertebral maturation. Angle Orthod 2012;82:229-34. https://doi.org/10.2319/051511-333.1
- Nestman TS, Marshall SD, Qian F, Holton N, Franciscus RG, Southard TE. Cervical vertebrae maturation method morphologic criteria: poor reproducibility. Am J Orthod Dentofacial Orthop 2011;140:182-8. https://doi.org/10.1016/j.ajodo.2011.04.013
- Makaremi M, Lacaule C, Mohammad-Djafari A. Deep learning and artificial intelligence for the determination of the cervical vertebra maturation degree from lateral radiography. Entropy 2019;21:1222. https://doi.org/10.3390/e21121222
- Khanagar SB, Al-Ehaideb A, Maganur PC, Vishwanathaiah S, Patil S, Baeshen HA, et al. Developments, application, and performance of artificial intelligence in dentistry - a systematic review. J Dent Sci 2021;16:508-22. https://doi.org/10.1016/j.jds.2020.06.019
- Amasya H, Yildirim D, Aydogan T, Kemaloglu N, Orhan K. Cervical vertebral maturation assessment on lateral cephalometric radiographs using artificial intelligence: comparison of machine learning classifier models. Dentomaxillofac Radiol 2020;49:20190441. https://doi.org/10.1259/dmfr.20190441
- LeCun Y, Bengio Y, Hinton G. Deep learning. Nature 2015;521:436-44. https://doi.org/10.1038/nature14539
- Schwendicke F, Samek W, Krois J. Artificial intelligence in dentistry: chances and challenges. J Dent Res 2020;99:769-74. https://doi.org/10.1177/0022034520915714
- Mohammad-Rahimi H, Nadimi M, Ghalyanchi-Langeroudi A, Taheri M, Ghafouri-Fard S. Application of machine learning in diagnosis of COVID-19 through X-ray and CT images: a scoping review. Front Cardiovasc Med 2021;8:638011. https://doi.org/10.3389/fcvm.2021.638011
- Mohammad-Rahimi H, Nadimi M, Rohban MH, Shamsoddin E, Lee VY, Motamedian SR. Machine learning and orthodontics, current trends and the future opportunities: a scoping review. Am J Orthod Dentofacial Orthop 2021;160:170-92.e4. https://doi.org/10.1016/j.ajodo.2021.02.013
- Ravishankar H, Sudhakar P, Venkataramani R, Thiruvenkadam S, Annangi P, Babu N, et al. Understanding the mechanisms of deep transfer learning for medical images. Cham: Springer International Publishing; 2016. p. 188-96.
- Kok H, Acilar AM, Izgi MS. Usage and comparison of artificial intelligence algorithms for determination of growth and development by cervical vertebrae stages in orthodontics. Prog Orthod 2019;20:41. https://doi.org/10.1186/s40510-019-0295-8
- Mongan J, Moy L, Kahn CE Jr. Checklist for Artificial Intelligence in Medical Imaging (CLAIM): a guide for authors and reviewers. Radiol Artif Intell 2020;2:e200029. https://doi.org/10.1148/ryai.2020200029
- Wang CW, Huang CT, Lee JH, Li CH, Chang SW, Siao MJ, et al. A benchmark for comparison of dental radiography analysis algorithms. Med Image Anal 2016;31:63-76. https://doi.org/10.1016/j.media.2016.02.004
- Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics 1977;33:159-74. https://doi.org/10.2307/2529310
- Tajmir SH, Lee H, Shailam R, Gale HI, Nguyen JC, Westra SJ, et al. Artificial intelligence-assisted interpretation of bone age radiographs improves accuracy and decreases variability. Skeletal Radiol 2019;48:275-83. https://doi.org/10.1007/s00256-018-3033-2
- Graber LW, Vanarsdall Jr RL, Vig KWL, Huang GJ. Orthodontics: current principles and techniques. 6th ed. St. Louis: Elsevier; 2016.
- Yu HJ, Cho SR, Kim MJ, Kim WH, Kim JW, Choi J. Automated skeletal classification with lateral cephalometry based on artificial intelligence. J Dent Res 2020;99:249-56. https://doi.org/10.1177/0022034520901715
- Amasya H, Cesur E, Yildirim D, Orhan K. Validation of cervical vertebral maturation stages: artificial intelligence vs human observer visual analysis. Am J Orthod Dentofacial Orthop 2020;158:e173-9. https://doi.org/10.1016/j.ajodo.2020.08.014
- Yu Y, Lin H, Meng J, Wei X, Guo H, Zhao Z. Deep transfer learning for modality classification of medical images. Information 2017;8:91. https://doi.org/10.3390/info8030091
- He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. Paper presented at: 2016 IEEE Conference on Computer Vision and Pattern Recognition; 2016 Jun 27-30; Las Vegas, USA. Piscataway; Institute of Electrical and Electronics Engineers, 2016. p. 770-8.
- Wang W, Liang D, Chen Q, Iwamoto Y, Han XH, Zhang Q, et al. Medical image classification using deep learning. In: Chen YW, Jain LC, eds. Deep learning in healthcare: paradigms and applications. Cham: Springer; 2020. p. 33-51.
- Shin HC, Tenenholtz NA, Rogers JK, Schwarz CG, Senjem ML, Gunter JL, et al. Medical image synthesis for data augmentation and anonymization using generative adversarial networks. Cham: Springer International Publishing; 2018. p. 1-11.
- Johnson JM, Khoshgoftaar TM. Survey on deep learning with class imbalance. J Big Data 2019;6:27. https://doi.org/10.1186/s40537-019-0192-5
- Ramentol E, Caballero Y, Bello R, Herrera F. SMOTE-RSB*: a hybrid preprocessing approach based on oversampling and undersampling for high imbalanced data-sets using SMOTE and rough sets theory. Knowl Inf Syst 2012;33:245-65. https://doi.org/10.1007/s10115-011-0465-6