DOI QR코드

DOI QR Code

Neuroprotective effects of paeoniflorin against neuronal oxidative stress and neuroinflammation induced by lipopolysaccharide in mice

  • Meng, Hwi Wen (Department of Food Science and Nutrition, Pusan National University) ;
  • Lee, Ah Young (Department Food Science, Gyeongsang National University) ;
  • Kim, Hyun Young (Department Food Science, Gyeongsang National University) ;
  • Cho, Eun Ju (Department of Food Science and Nutrition, Pusan National University) ;
  • Kim, Ji Hyun (Department Food Science, Gyeongsang National University)
  • Received : 2021.12.07
  • Accepted : 2022.01.19
  • Published : 2022.03.31

Abstract

Oxidative stress and neuroinflammation play important roles in the pathogenesis of Alzheimer's disease (AD). This study investigated the protective effects of paeoniflorin (PF) against neuronal oxidative stress and neuroinflammation in lipopolysaccharide (LPS)-induced mice. The brains of LPS-injected control group showed significantly increased neuroinflammation by activating the nuclear factor kappa B (NF-κB) pathway and increasing inflammatory mediators. However, administration of PF significantly attenuated oxidative stress by inhibiting lipid peroxidation, nitric oxide levels, and reactive oxygen species production in the brain; PF at doses of 5 and 10 mg/kg/day downregulated the expression of NF-κB pathway-related proteins and significantly decreased inflammatory mediators including inducible nitric oxide synthase and cyclooxygenase-2. Moreover, the levels of brain-derived neurotrophic factor and its receptor, tropomycin receptor kinase B, were significantly increased in PF-treated mice. Furthermore, acetylcholinesterase activity and the ration of B-cell lymphoma 2 (Bcl-2)/Bcl-2 associated X were significantly reduced by PF in the brains of LPS-induced mice, resulting in the inhibition of cholinergic dysfunction and neuronal apoptosis. Thus, we can conclude that administration of PF to mice prevents the development of LPS-induced AD pathology through the inhibition of neuronal oxidative stress and neuroinflammation, suggesting that PF has a therapeutic potential for AD.

Keywords

Acknowledgement

This work was supported by Gyeongsang National University Grant in 2020-2021.

References

  1. Sosa-Ortiz AL, Acosta-Castillo I, Prince MJ (2012) Epidemiology of dementias and Alzheimer's disease. Arch Med Res 43: 600-608. doi: 10.1016/j.arcmed.2012.11.003
  2. Markesbery WR, Carney JM (1999) Oxidative alterations in Alzheimer's disease. Brain Pathol 9: 133-146 https://doi.org/10.1111/j.1750-3639.1999.tb00215.x
  3. Abuja PM, Albertini R (2001) Methods for monitoring oxidative stress, lipid peroxidation and oxidation resistance of lipoproteins. Clinica Chimica Acta 306: 1-17. doi: 10.1016/s0009-8981(01)00393-x
  4. Agostinho P, Cunha RA, Oliveira C (2010) Neuroinflammation, oxidative stress and the pathogenesis of Alzheimer's disease. Curr Pharm Des 16: 2766-2778. doi: 10.2174/138161210793176572
  5. Kaltschmidt C, Kaltschmidt B, Neumann H, Wekerle H, Baeuerle PA (1994) Constitutive NF-kappa B activity in neurons. Mol Cell Biol 14: 3981-3992. doi: 10.1128/mcb.14.6.3981-3992.1994
  6. Dresselhaus EC, Meffert MK (2019) Cellular specificity of NF-κB function in the nervous system. Front Immunol 10: 1043. doi: 10.3389/fimmu.2019.01043
  7. Lima Giacobbo B, Doorduin J, Klein HC, Dierckx R, Bromberg E, de Vries E (2019) Brain-derived neurotrophic factor in brain disorders: focus on neuroinflammation. Mol Neurobiol 56: 3295-3312. doi: 10.1007/s12035-018-1283-6
  8. Menze ET, Esmat A, Tadros MG, Abdel-Naim AB, Khalifa AE (2015) Genistein improves 3-NPA-induced memory impairment in ovariectomized rats: impact of its antioxidant, anti-inflammatory and acetylcholinesterase modulatory properties. PLoS One 10: e0117223. doi: 10.1371/journal.pone.0117223
  9. McGeer EG, McGeer PL (2010) Neuroinflammation in Alzheimer's disease and mild cognitive impairment: a field in its infancy. J Alzheimer's Dis 19: 355-361. doi: 10.3233/JAD-2010-1219
  10. Raetz CR, Whitfield C (2002) Lipopolysaccharide endotoxins. Annu Rev Biochem 71: 635-700. doi: 10.1146/annurev.biochem.71.110601.135414
  11. Qin L, Liu Y, Hong JS, Crews FT (2013) NADPH oxidase and aging drive microglial activation, oxidative stress, and dopaminergic neurodegeneration following systemic LPS administration. Glia 61: 855-868. doi: 10.1002/glia.22479
  12. Chow JC, Young DW, Golenbock DT, Christ WJ, Gusovsky F (1999) Toll-like receptor-4 mediates lipopolysaccharide-induced signal transduction. J Biol Chem 274: 10689-10692. doi: 10.1074/jbc.274.16.10689
  13. Baatar D, Siddiqi MZ, Im WT, Ul Khaliq N, Hwang SG (2018) Anti-inflammatory effect of ginsenoside rh2-mix on lipopolysaccharide-stimulated RAW 264.7 murine macrophage cells. J Med Food 21: 951-960. doi: 10.1089/jmf.2018.4180
  14. Guo J, Lin P, Zhao X, Zhang J, Wei X, Wang Q, Wang C (2014) Etazolate abrogates the lipopolysaccharide (LPS)-induced downregulation of the cAMP/pCREB/BDNF signaling, neuroinflammatory response and depressive-like behavior in mice. Neuroscience 263: 1-14. doi: 10.1016/j.neuroscience.2014.01.008
  15. Jin Y, Peng J, Wang X, Zhang D, Wang T (2017) Ameliorative effect of ginsenoside rg1 on lipopolysaccharide-induced cognitive impairment: role of cholinergic system. Neurochem Res 42: 1299-1307. doi: 10.1007/s11064-016-2171-y
  16. Xin Q, Yuan R, Shi W, Zhu Z, Wang Y, Cong W (2019) A review for the anti-inflammatory effects of paeoniflorin in inflammatory disorders. Life Sci 237: 116925. doi: 10.1016/j.lfs.2019.116925
  17. Wang K, Zhu L, Zhu X, Zhang K, Huang B, Zhang J, Zhang Y, Zhu L, Zhou B, Zhou F (2014) Protective effect of paeoniflorin on Aβ25-35-induced SH-SY5Y cell injury by preventing mitochondrial dysfunction. Cell Mol Neurobiol 34: 227-234. doi: 10.1007/s10571-013-0006-9
  18. Zhang HR, Peng JH, Cheng XB, Shi BZ, Zhang MY, Xu RX (2015) Paeoniflorin atttenuates amyloidogenesis and the inflammatory responses in a transgenic mouse model of Alzheimer's disease. Neurochem Res 40: 1583-1592. doi: 10.1007/s11064-015-1632-z
  19. Lan Z, Chen L, Fu Q, Ji W, Wang S, Liang Z, Qu R, Kong L, Ma S (2013) Paeoniflorin attenuates amyloid-beta peptide-induced neurotoxicity by ameliorating oxidative stress and regulating the NGF-mediated signaling in rats. Brain Res 1498: 9-19. doi: 10.1016/j.brainres.2012.12.040
  20. Wang T, Xu L, Gao L, Zhao L, Liu XH, Chang YY, Liu YL (2020) Paeoniflorin attenuates early brain injury through reducing oxidative stress and neuronal apoptosis after subarachnoid hemorrhage in rats. Metab Brain Dis 35: 959-970. doi: 10.1007/s11011-020-00571-w
  21. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95: 351-358. doi: 10.1016/0003-2697(79)90738-3
  22. Schmidt HH, Warner TD, Nakane M, Forstermann U, Murad F (1992) Regulation and subcellular location of nitrogen oxide synthases in RAW264.7 macrophages. Mol Pharmacol 41: 615-624
  23. Ali SF, LeBel CP, Bondy SC (1992) Reactive oxygen species formation as a biomarker of methylmercury and trimethyltin neurotoxicity. Neurotoxicology 13: 637-648
  24. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248-254. doi: 10.1006/abio.1976.9999
  25. Batista CRA, Gomes GF, Candelario-Jalil E, Fiebich BL, de Oliveira ACP (2019) Lipopolysaccharide-induced neuroinflammation as a bridge to understand neurodegeneration. Int J Mol Sci 20: 2293. doi: 10.3390/ijms20092293
  26. Qin L, Wu X, Block ML, Liu Y, Breese GR, Hong JS, Knapp DJ, Crews FT (2007) Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration. Glia 55: 453-462. doi: 10.1002/glia.20467
  27. Sorrenti V, Contarini G, Sut S, Dall'Acqua S, Confortin F, Pagetta A, Giusti P, Zusso M (2018) Curcumin prevents acute neuroinflammation and long-term memory impairment induced by systemic lipopolysaccharide in mice. Front Pharmacol 9: 183. doi: 10.3389/fphar.2018.00183
  28. Huang SJ, Wang R, Shi YH, Yang L, Wang ZY, Wang ZT (2012) Primary safety evaluation of sulfated Paeoniae Radix Alba. Yao Xue Xue Bao 47: 486-491
  29. West AP, Brodsky IE, Rahner C, Woo DK, Erdjument-Bromage H, Tempst P, Walsh MC, Choi Y, Shadel GS, Ghosh S (2011) TLR signalling augments macrophage bactericidal activity through mitochondrial ROS. Nature 472: 476-480. doi: 10.1038/nature09973
  30. Perry G, Castellani RJ, Hirai K, Smith MA (1998) Reactive oxygen species mediate cellular damage in Alzheimer disease. J Alzheimers Dis 1: 45-55. doi: 10.3233/jad-1998-1103
  31. Su YW, Chiou WF, Chao SH, Lee MH, Chen CC, Tsai YC (2011) Ligustilide prevents LPS-induced iNOS expression in RAW 264.7 macrophages by preventing ROS production and down-regulating the MAPK, NF-κB and AP-1 signaling pathways. Int Immunopharmacol 11: 1166-1172. doi: 10.1016/j.intimp.2011.03.014
  32. Hsu PJ, Shou H, Benzinger T, Marcus D, Durbin T, Morris JC, Sheline YI (2015) Amyloid burden in cognitively normal elderly is associated with preferential hippocampal subfield volume loss. J Alzheimer's Dis 45: 27-33. doi: 10.3233/JAD-141743
  33. Shah SA, Khan M, Jo MH, Jo MG, Amin FU, Kim MO (2017) Melatonin stimulates the SIRT1/Nrf2 signaling pathway counteracting lipopolysaccharide (LPS)-induced oxidative stress to rescue postnatal rat brain. CNS Neurosci Ther 23: 33-44. doi: 10.1111/cns.12588
  34. Yadav UCS (2015) Oxidative stress-induced lipid peroxidation: role in inflammation. Free Radicals in Human Health and Disease 2015: 119-129. doi: 10.1007/978-81-322-2035-0_9
  35. Lovell MA, Ehmann WD, Butler SM, Markesbery WR (1995) Elevated thiobarbituric acid-reactive substances and antioxidant enzyme activity in the brain in Alzheimer's disease. Neurology 45: 1594-1601. doi: 10.1212/wnl.45.8.1594
  36. Markesbery WR, Lovell MA (1998) Four-hydroxynonenal, a product of lipid peroxidation, is increased in the brain in Alzheimer's disease. Neurobiol Aging 19: 33-36. doi: 10.1016/s0197-4580(98)00009-8
  37. Varadarajan S, Yatin S, Aksenova M, Butterfield DA (2000) Review: Alzheimer's amyloid beta-peptide-associated free radical oxidative stress and neurotoxicity. J Struct Biol 130: 184-208. doi: 10.1006/jsbi.2000.4274
  38. Dorheim MA, Tracey WR, Pollock JS, Grammas P (1994) Nitric oxide synthase activity is elevated in brain microvessels in Alzheimer's disease. Biochem Biophys Res Commun 205: 659-665. doi: 10.1006/bbrc.1994.2716
  39. Sun R, Lv LL, Liu GQ (2006) Effects of paeoniflorin on cerebral energy metabolism, nitric oxide and nitric oxide synthase after cerebral ischemia in mongoliagerbils. Zhongguo Zhong Yao Za Zhi 31: 832-835
  40. Kim ID, Ha BJ (2010) The effects of paeoniflorin on LPS-induced liver inflammatory reactions. Arch Pharm Res 33: 959-966. doi: 10.1007/s12272-010-0620-8
  41. Kheir-Eldin AA, Motawi TK, Gad MZ, Abd-ElGawad HM (2001) Protective effect of vitamin E, beta-carotene and N-acetylcysteine from the brain oxidative stress induced in rats by lipopolysaccharide. Int J Biochem 33: 475-482. doi: 10.1016/s1357-2725(01)00032-2
  42. Ray S, Britschgi M, Herbert C, Takeda-Uchimura Y, Boxer A, Blennow K, Friedman LF, Galasko DR, Jutel M, Karydas A, Kaye JA, Leszek J, Miller BL, Minthon L, Quinn JF, Rabinovici GD, Robinson WH, Sabbagh MN, So YT, Sparks DL, Tabaton M, Tinklenberg J, Yesavage JA, Tibshirani R, Wyss-Coray T (2007) Classification and prediction of clinical Alzheimer's diagnosis based on plasma signaling proteins. Nat Med 13: 1359-1362. doi: 10.1038/nm1653
  43. Ye J, Jiang Z, Chen X, Liu M, Li J, Liu N (2017) The role of autophagy in pro-inflammatory responses of microglia activation via mitochondrial reactive oxygen species in vitro. J Neurochem 142: 215-230. doi: 10.1111/jnc.14042
  44. Jha NK, Jha SK, Kar R, Nand P, Swati K, Goswami VK (2019) Nuclear factor-kappa β as a therapeutic target for Alzheimer's disease. J Neurochem 150: 113-137. doi: 10.1111/jnc.14687
  45. Badshah H, Ali T, Kim MO (2016) Osmotin attenuates LPS-induced neuroinflammation and memory impairments via the TLR4/NFκB signaling pathway. Sci Rep 6: 24493. doi: 10.1038/srep24493
  46. Olajide OA, Bhatia HS, de Oliveira AC, Wright CW, Fiebich BL (2013) Inhibition of neuroinflammation in LPS-activated microglia by cryptolepine. Evid Based Complement Alternat Med 2013: 459723. doi: 10.1155/2013/459723
  47. Chen Y, Yang L, Lee TJ (2000) Oroxylin A inhibition of lipopolysaccharide-induced iNOS and COX-2 gene expression via suppression of nuclear factor-kappaB activation. Biochem Pharmacol 59: 1445-1457. doi: 10.1016/s0006-2952(00)00255-0
  48. Tansey MG, McCoy MK, Frank-Cannon TC (2007) Neuroinflammatory mechanisms in Parkinson's disease: potential environmental triggers, pathways, and targets for early therapeutic intervention. Exp Neurol 208: 1-25. doi: 10.1016/j.expneurol.2007.07.004
  49. Block ML, Hong JS (2005) Microglia and inflammation-mediated neurodegeneration: multiple triggers with a common mechanism. Prog Neurobiol 76: 77-98. doi: 10.1016/j.pneurobio.2005.06.004
  50. Inestrosa NC, Sagal JP, Colombres M (2005) Acetylcholinesterase interaction with Alzheimer amyloid beta. Subcell Biochem 38: 299-317. doi: 10.1007/0-387-23226-5_15
  51. Borovikova LV, Ivanova S, Zhang M, Yang H, Botchkina GI, Watkins LR, Wang H, Abumrad N, Eaton JW, Tracey KJ (2000) Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 405: 458-462. doi: 10.1038/35013070
  52. Singh M, Kaur M, Kukreja H, Chugh R, Silakari O, Singh D (2013) Acetylcholinesterase inhibitors as Alzheimer therapy: from nerve toxins to neuroprotection. Eur J Med Chem 70: 165-188. doi: 10.1016/j.ejmech.2013.09.050
  53. Tyagi E, Agrawal R, Nath C, Shukla R (2007) Effect of anti-dementia drugs on LPS induced neuroinflammation in mice. Life Sci 80: 1977-1983. doi: 10.1016/j.lfs.2007.02.039
  54. Ming Z, Wotton CA, Appleton RT, Ching JC, Loewen ME, Sawicki G, Bekar LK (2015) Systemic lipopolysaccharide-mediated alteration of cortical neuromodulation involves increases in monoamine oxidase-A and acetylcholinesterase activity. J Neuroinflammation 12: 37. doi: 10.1186/s12974-015-0259-y
  55. Ching S, Zhang H, Lai W, Quan N (2006) Peripheral injection of lipopolysaccharide prevents brain recruitment of leukocytes induced by central injection of interleukin-1. Neuroscience 137: 717-726. doi: 10.1016/j.neuroscience.2005.08.087
  56. Lykhmus O, Gergalova G, Zouridakis M, Tzartos S, Komisarenko S, Skok M (2015) Inflammation decreases the level of alpha7 nicotinic acetylcholine receptors in the brain mitochondria and makes them more susceptible to apoptosis induction. Int Immunopharmacol 29: 148-151. doi: 10.1016/j.intimp.2015.04.007
  57. Laske C, Stransky E, Leyhe T, Eschweiler GW, Wittorf A, Richartz E, Bartels M, Buchkremer G, Schott K (2006) Stage-dependent BDNF serum concentrations in Alzheimer's disease. J Neural Transm Suppl 113: 1217-1224. doi: 10.1007/s00702-005-0397-y
  58. Phillips HS, Hains JM, Armanini M, Laramee GR, Johnson SA, Winslow JW (1991) BDNF mRNA is decreased in the hippocampus of individuals with Alzheimer's disease. Neuron 7: 695-702. doi: 10.1016/0896-6273(91)90273-3
  59. Yamada K, Nabeshima T (2003) Brain-derived neurotrophic factor/TrkB signaling in memory processes. J Pharmacol Sci 91: 267-270. doi: 10.1254/jphs.91.267
  60. Song X, Zhou B, Zhang P, Lei D, Wang Y, Yao G, Hayashi T, Xia M, Tashiro S, Onodera S, Ikejima T (2016) Protective effect of silibinin on learning and memory impairment in LPS-treated rats via ROS-BDNF-TrkB pathway. Neurochem Res 41: 1662-1672. doi: 10.1007/s11064-016-1881-5
  61. Lykhmus O, Mishra N, Koval L, Kalashnyk O, Gergalova G, Uspenska K, Komisarenko S, Soreq H, Skok M (2016) Molecular mechanisms regulating LPS-induced inflammation in the brain. Front Mol Neurosci 9: 19. doi: 10.3389/fnmol.2016.00019
  62. Reed JC (2006) Proapoptotic multidomain Bcl-2/Bax-family proteins: mechanisms, physiological roles, and therapeutic opportunities. Cell Death Differ 13: 1378-1386. doi: 10.1038/sj.cdd.4401975