DOI QR코드

DOI QR Code

Dormancy-breaking and Germination of Chelidonium majus L. subsp. asiaticum H. Hara Seeds by Stratification and Gibberellins

  • Boran, Ji (Division of Animal, Horticultural and Food Sciences, Chungbuk National University) ;
  • Hayan, Lee (Seed Vault Center, Baekdudaegan National Arboretum) ;
  • Kyungtae, Park (Division of Animal, Horticultural and Food Sciences, Chungbuk National University) ;
  • Sang Yeob, Lee (Kiban Operation Department (KOD) production planning, The Kiban Co. Ltd.) ;
  • Bo-Kook, Jang (Garden and Plant Resources Division, Korea National Arboretum) ;
  • In Hwan, Chae (Garden Promotion Department, Korea Arboreta and Gardens Institute) ;
  • Chung Youl, Park (Division of Wild Plant Seed Research, Baekdudaegan Natuonal Arboretum) ;
  • Sung Pil, Kwon (Research & Development Center, Chungdam CDC JNPharm LLC.) ;
  • Deug-Chan, Lee (Department of Biomedical Technology, Kangwon National University) ;
  • Ju-Sung, Cho (Division of Animal, Horticultural and Food Sciences, Chungbuk National University)
  • Received : 2022.10.17
  • Accepted : 2022.11.23
  • Published : 2022.12.01

Abstract

The demand for Chelidonium majus L. subsp. asiaticum H. Hara is expected to increase due to its pharmacological properties such as antibacterial, antioxidant, and anti-inflammatory effects. However, an effective propagation system for this species has not yet been established. This study was conducted to analyze the seed dormancy and germination characteristics of C. majus L. subsp. asiaticum H. Hara native to Korea and establish a mass propagation system. The dormancy type was primarily classified by analyzing the general information of the collected seeds. The seed dormancy breaking was investigated by comparing the effects of cold stratification (0, 2, 4, 8, 10, or 12 weeks) with warm stratification (S, summer temperature, 25/15℃) and intermediate temperature stratification (A, autumn temperature, 15/10℃) of alternating temperature stratification (S12-A4 or S12-A8 weeks). After dormancy break, 500 mg/L GA3 and GA4+7 treatment replaced cold stratification and improved seed germination. The results of this study are expected to provide basic data for future seed propagation and mass propagation by analyzing the dormancy and germination characteristics of C. majus L. subsp. asiaticum H. Hara seeds.

Keywords

Acknowledgement

This work was supported by National Research Foundation of Korea Grant funded by the Korean Government (NRF-2019R1I1A2A01062559). This work was supported by the research grant of the Chungbuk National University in 2019.

References

  1. Abbad, A., R. Belaqziz, K. Bekkouche and M. Markouk. 2011. Influence of temperature and water potential on laboratory germination of two moroccan endemic thymes: Thymus maroccanus Ball. and Thymus broussonetii Boiss. Afr. J. Agric. Res. 6(20):4740-4745.
  2. Baskin, C.C. and J.M. Baskin. 2003. When breaking seed dormancy is a problem try a move-along experiment. Native Plants J. 4(1):17-21.
  3. Baskin, C.C. and J.M. Baskin. 2014. Seeds: Ecology, Biogeography, and Evolution of Dormancy and Germination; Elsevier, San Diego, CA (USA).
  4. Baskin, C.C., P. Milberg., L. Andersson and J.M. Baskin. 2002. Non-deep simple morphophysiological dormancy in seeds of the weedy facultative winter annual Papaver rhoeas. Weed Res. 42(3):194-202.
  5. Baskin, J.M. and C.C. Baskin. 1981. Seasonal changes in the germination responses of buried Lamium amplexicaule seeds. Weed Res. 21(6):299-306. https://doi.org/10.1111/j.1365-3180.1981.tb00131.x
  6. Baskin, J.M. and C.C. Baskin. 1985. The annual dormancy cycle in buried weed seeds: a continuum. BioScience 35(8):492-498. https://doi.org/10.2307/1309817
  7. Baskin, J.M. and C.C. Baskin. 2004. A classification system for seed dormancy. Seed Sci. Res. 14(1):1-16. https://doi.org/10.1079/ssr2003150
  8. Bewley, J.D. and M. Black. 1982. The Release from Dormancy: Physiology and Biochemistry of Seeds in Relation to Germination, Springer, Berlin, Heidelberg, Germany. pp. 126-198.
  9. Bewley, J.D., K. Bradford and H. Hilhorst. 2012. Seeds: Physiology of Development, Germination and Dormancy; Springer Science and Business Media, New York, NY (USA).
  10. Fedi, F., C.M. O'Neill, G. Menard, M. Trick, S. Dechirico, F. Corbineau, C. Bailly, P.J. Eastmond and S. Penfield. 2017. Awake1, an ABC-type transporter, reveals an essential role for suberin in the control of seed dormancy. Plant Physiol. 174(1):276-283. https://doi.org/10.1104/pp.16.01556
  11. Finch-Savage, W.E. and G. Leubner-Metzger. 2006. Seed dormancy and the control of germination. New Phytol. 171(3):501-523. https://doi.org/10.1111/j.1469-8137.2006.01787.x
  12. Froud-Williams, R.J., D.S.H. Drennan and R.J. Chancellor. 1984. The influence of burial and dry-storage upon cyclic changes in dormancy, germination and response to light in seeds of various arable weeds. New Phytol. 96(3):473-481. https://doi.org/10.1111/j.1469-8137.1984.tb03581.x
  13. Grime, J.P., G. Mason, A.V. Curtis, J. Rodman and S.R. Band. 1981. A comparative study of germination characteristics in a local flora. J. Ecol. 69(3):1017-1059. https://doi.org/10.2307/2259651
  14. Haeussler, S. and J.C. Tappeiner. 1993. Effect of the light environment on seed germination of red alder (Alnus rubra). Can. J. For. Res. 23(7):1487-1491. https://doi.org/10.1139/x93-186
  15. Harper, K.T. and R. Van Buren. 2004. Dynamics of a dwarf bear-poppy (Arctomecon humilis) population over a sixteen-year period. West. North Am. Nat. 64(4):482-491.
  16. Hedden, P. and S.G. Thomas. 2012. Gibberellin biosynthesis and its regulation. Biochem. J. 444(1):11-25. https://doi.org/10.1042/BJ20120245
  17. Hilhorst, H.W.M. 1995. A critical update on seed dormancy. I. primary dormancy. Seed Sci. Res. 5(2):61-73. https://doi.org/10.1017/S0960258500002634
  18. Jung, H.M., S.J. Seo, J.B. Kim, N.W. Kim, and E.Y. Joo. 2011. The study of physiological activities from Chelidonium majus var. asiaticum extract. J. Invest. Cosmetol. 7(4):359-366. https://doi.org/10.15810/jic.2011.7.4.004
  19. Karlsson, L.M. and P. Milberg, 2007. A comparative study of germination ecology of four Papaver Taxa. Ann. Bot. 99(5):935-946. https://doi.org/10.1093/aob/mcm045
  20. Karssen, C.M. 1976. Two sites of hormonal action during germination of Chenopodium album Seeds. Physiol. Plant. 36(3):264-270. https://doi.org/10.1111/j.1399-3054.1976.tb04426.x
  21. Kim, G.M., J.M. Chung, J.Y. Jung, H.J. Choi and S.Y. Lee. 2022. Germination characteristics in seeds of Broussonetia kazinoki Siebold ex Siebold & Zucc (Moraceae) native to east asia. Korean J. Plant Res. 35(1):36-43 (in Korean).
  22. Kim, H.J. and H. Na. 2021. Seed dormancy and germination in Oenanthe stolonifera as affected by temperature and gibberellic acid. Hortic. Environ. Biotechnol. 62(1):1-8. https://doi.org/10.1007/s13580-020-00292-0
  23. Kim, M.S., B.Y. Hwang, S.G. Choe, M.K. Lee, J.S. Ro and K.S. Lee. 2000. Alkaloidal components of Chelidonii fructus. Korean J. Pharmacogn. 31(4):390-393 (in Korean).
  24. Ko, C.H., S.Y. Lee, S.I. Oh, E.H. Park, M. Gil, S.H. Kim and M.J. Yoon. 2022. Seed dormancy and germination in Iris laevigata (Iridaceae), a rare species in Korea. Flower Res. J. 30(2):75-81 (in Korean). https://doi.org/10.11623/frj.2022.30.2.05
  25. Korea Biodiversity Information System (KBIS). (2021) Available online: http://www.nature.go.kr/kbi/plant/pilbk/selectPlantPilbkDtl.do?plantPilbkNo=26468 (accessed on 20. 9. 2021).
  26. Kucera, B., M.A. Cohn, and G. Leubner-Metzger. 2005. Plant hormone interactions during seed dormancy release and germination. Seed Sci. Res. 15(4):281-307. https://doi.org/10.1079/SSR2005218
  27. Lee, S.Y., Rhie, Y.H., Kim, Y.J. and K.S. Kim. 2012. Morphological and morphophysiological dormancy in seeds of several spring ephemerals native to Korea. Flower Res. J. 20(4):193-199 (in Korean). https://doi.org/10.11623/frj.2012.20.4.193
  28. Lu, Q., Z.S. Zhang, R.T. Zhan and R. He. 2018. Proteomic analysis of Zanthoxylum nitidum seeds dormancy release: influence of stratification and gibberellin. Ind. Crops Prod. 122:7-15. https://doi.org/10.1016/j.indcrop.2018.05.044
  29. Maji, A.K. and P. Banerji. 2015. Chelidonium majus L. (Greater Celandine) - a review on its phytochemical and therapeutic perspectives. Int. J. Herb. Med. 3(1):10-27. https://doi.org/10.22271/flora.2015.v3.i1.03
  30. Mamut, J., D.Y. Tan, C.C. Baskin, and J.M. Baskin. 2014. Intermediate complex morphophysiological dormancy in seeds of the cold desert sand dune geophyte Eremurus anisopterus (Xanthorrhoeaceae; Liliaceae sl.). Ann. Bot. 114(5):991-999. https://doi.org/10.1093/aob/mcu164
  31. Martin, A.C. 1946. The comparative internal morphology of seeds. Am. Midl. Nat. 36(3):513-660. https://doi.org/10.2307/2421457
  32. Martinkova, Z. and A. Honek, 1997. Germination and seed viability in a dandelion, Taraxacum officinale Agg. Ochrana Rostlin. 33(2):125-133.
  33. Nikolaeva, M.G. 2004. On criteria to use in studies of seed evolution. Seed Sci. Res. 14(4):315-320. https://doi.org/10.1079/SSR2004185
  34. Roberts, H.A. and J.E. Neilson. 1982. Seasonal changes in the temperature requirements for germination of buried seeds of Aphanes arvensis L. New Phytol. 92(2):159-166. https://doi.org/10.1111/j.1469-8137.1982.tb03372.x
  35. Ryu, S.H., Y.H. Rhie, S.Y. Lee, C.H. Ko, J.H. Lee, H.J. Lee and K.C. Lee. 2017. Effect of after-ripening, cold stratification, and GA3 treatment on Lychnis wilfordii (Regel) maxim seed germination. Hortic. Sci. Technol. 35(5):525-533. https://doi.org/10.7235/HORT.20170057
  36. Smiris, P., E. Pipinis, M. Aslanidou, O. Mavrokordopoulou, E. Milios and A. Kouridakis. 2006. Germination study on Arbutus unedo L. (Ericaceae) and Podocytisus caramanicus Boiss. & Heldr. (Fabaceae). J. Biol. Res. 5:85-91.
  37. Willemsen, R.W. 1975. Effect of stratification temperature and germination temperature on germination and the induction of secondary dormancy in common ragweed seeds. Am. J. Bot. 62(1):1-5. https://doi.org/10.1002/j.1537-2197.1975.tb12333.x
  38. Yamauchi, Y., M. Ogawa, A. Kuwahara, A. Hanada, Y. Kamiya and S. Yamaguchi. 2004. Activation of gibberellin biosynthesis and response pathways by low temperature during imbibition of Arabidopsis thaliana seeds. Plant Cell 16(2):367-378. https://doi.org/10.1105/tpc.018143