DOI QR코드

DOI QR Code

Identification of Adaptive Traits Facilitating the Mechanized Harvesting of Adzuki Bean (Vigna angularis)

  • Xiaohan, Wang (National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Yu-Mi, Choi (National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Sukyeung, Lee (National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Myoung-Jae, Shin (National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Jung Yoon, Yi (National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Kebede Taye, Desta (National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Hyemyeong, Yoon (National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration)
  • Received : 2022.10.17
  • Accepted : 2022.10.24
  • Published : 2022.12.01

Abstract

Traditional germplasms are unsuitable for mechanized production, limiting adzuki bean production. The creation of cultivars that can be harvested by mechanized means is an urgent task for breeders. The bottom pod height (BPH), lodging resistance, and synchronous maturing of adzuki beans are critical factors for the reduction of losses due to mechanized harvesting. In this study, 14 traits of 806 adzuki bean accessions were analyzed. All growth stages and the yield, lodging score, and synchronous maturing correlated negatively with the BPH. These negative correlations reflect the increased difficulty of breeding to simultaneously satisfy the needs for no lodging, high synchronous maturing rates, BPHs > 10 cm, and high yield. We screened three germplasms with no lodging, high synchronous maturing rates, and BPHs > 10 cm that were used as mechanization-adapted breeding material for crossing with high-yield cultivars. Agronomic trait diversity in adzuki beans was also examined in this study. Principal component and cluster analyses were conducted for 806 germplasms resulting in three clusters with the yield and three growth stage traits serving as the main discriminating factors. Cluster 1 included high-yield germplasms with the number of pods per plant and the number of seeds per pod being the major discriminant factors. Cluster 2 included germplasms with long growth periods and large 100-seed weights while cluster 3 contained germplasms with high BPHs. In general, the characteristics that make mechanical harvesting feasible and those assessed in this study could be utilized to choose and enhance adzuki beans production.

Keywords

Acknowledgement

This project was supported by the Research Program for Agricultural Science & Technology Development (Project No. PJ01619102).

References

  1. Bi, S., A. Wang, F. Lao, Q. Shen, X. Liao, P. Zhang and J. Wu. 2021. Effects of frying, roasting and boiling on aroma profiles of adzuki beans (Vigna angularis) and potential of adzuki bean and millet flours to improve flavor and sensory characteristics of biscuits. Food Chem. 339:127878.
  2. Caliskan, S., M. Arslan, I. Þremis and M.E. Caliskan. 2007. The effects of row spacing on yield and yield components of full season and double-cropped soybean. Turk. J. Agric. For. 31: 147-154.
  3. Charrad, M., N. Ghazzali, V. Boiteau and A. Niknafs. 2014. NbClust: an R package for determining the relevant number of clusters in a data set. J. Stat. Softw. 61:1-36.
  4. Ghodrati, G., R. Sekhavat, S. Mahmoodinezhadedezfully and A. Gholami. 2013. Evaluation of correlations and path analysis of components seed yield in soybean. Int. J. Agric. Res. 3:795.
  5. Gulluoglu, L., H. Bakal and H. Arioglu. 2016. The effects of twin-row planting pattern and plant population on seed yield and yield components of soybean at late double-cropped planting in Cukurova region. Turk. J. Field Crops 21:60-66.
  6. Ihaka, R. and R. Gentleman. 1996. R: a language for data analysis and graphics. J. Comput. Graph. Stat. 5:299-314. https://doi.org/10.2307/1390807
  7. Itoh, T. and Y. Furuichi. 2005. Hot-water extracts from adzuki beans (Vigna angularis) stimulate not only melanogenesis in cultured mouse B16 melanoma cells but also pigmentation of hair color in C3H mice. Biosci. Biotechnol. Biochem. 69:873-882. https://doi.org/10.1271/bbb.69.873
  8. Jiang, H., Y. Li, H. Qin, Y. Li, H. Qi, C. Li, N. Wang, R. Li, Y. Zhao and S. Huang. 2018. Identification of major QTLs associated with first pod height and candidate gene mining in soybean. Front. Plant Sci. 9:1280.
  9. Kang, B.-K., H.-T. Kim, M.-S. Choi, S.-C. Koo, J.-H. Seo, H.-S. Kim, S.-O. Shin, H.-T. Yun, I.-S. Oh and K.P. Kulkarni. 2017. Genetic and environmental variation of first pod height in soybean [Glycine max (L.) Merr.]. Plant Breed. Biotech. 5:36-44. https://doi.org/10.9787/PBB.2017.5.1.36
  10. Kim, T.J., J.G. Park, S.K. Ahn, K.W. Kim, J. Choi, H.Y. Kim, S.-H. Ha, W.D. Seo and J.K. Kim. 2020. Discrimination of adzuki bean (Vigna angularis) geographical origin by targeted and non-targeted metabolite profiling with gas chromatography time-of-flight mass spectrometry. Metabolites 10:112.
  11. Le, S., J. Josse and F. Husson. 2008. FactoMineR: an R package for multivariate analysis. J. Stat. Softw. 25:1-18.
  12. Lee, K.J., G.H. Kim, G.A. Lee, J.R. Lee, G.T. Cho, K.H. Ma and S. Lee. 2021. Antioxidant activities and total phenolic contents of three legumes. Korean J. Plant Res. 34:527-535.
  13. Lim, H.J., S.I. Park, S.G. Bak, S.H. Cheong, S. Lee, Y.B. Baek, C.M. Lee, K.M. Lee, S.W. Lee and S.J. Lee. 2020. Beneficial effects of Vigna angularis extract in osteoporosis and osteoarthritis. Food Sci. Nutr. 8:6550-6556. https://doi.org/10.1002/fsn3.1944
  14. Mirzaienasab, M. and M. Mojaddam. 2014. The effect of planting date on yield and yield components of two red bean cultivars in Azna weather conditions. Indian J. Fundam. Appl. Life Sci. 4:417-422.
  15. Nonokawa, K., M. Kokubun, T. Nakajima, T. Nakamura and R. Yoshida. 2007. Roles of auxin and cytokinin in soybean pod setting. Plant Prod. Sci. 10:199-206. https://doi.org/10.1626/pps.10.199
  16. Oz, M., A. Karasu, A.T. Goksoy and Z.M. Turan. 2009. Interrelationships of agronomical characteristics in soybean (Glycine max) grown in different environments. Int. J. Agric. Biol. 11:85-88.
  17. Song, S., J. Ko, K. Woo, M. Choe, J. Chu, T. Ha, S. Han and D. Kwak. 2019. A small redbean cultivar 'Hongjin'with lodging tolerance and high yield. Korean J. Breed. Sci. 51:523-528. https://doi.org/10.9787/kjbs.2019.51.4.523
  18. Song, S., J. Ko, K. Woo, M. Choe, T. Jung, J. Moon and T. Ha. 2018. A new small red bean cultivar 'Seona'with mechanization harvesting and lodging resistance. Korean J. Breed. Sci. 50:314-318. https://doi.org/10.9787/KJBS.2018.50.3.314
  19. Wang, L., J. Wang and X. Cheng 2019. Adzuki Bean (Vigna angularis (willd.) ohwi & ohashi) Breeding. Advances In Plant Breeding Strategies: Legumes. Springer, Cham, Switzerland. pp. 1-23.
  20. Wei, T., V. Simko, M. Levy, Y. Xie, Y. Jin and J. Zemla. 2017. Package 'Corrplot'. Statistician 56:e24.
  21. Wilson, P.A., J. S. Hanan, P.M. Room, S. Chakraborty and D. Doley. 1999. Using Lindenmayer systems to model morphogenesis in a tropical pasture legume Stylosanthes scabra. Can. J. Bot. 77:394-403. https://doi.org/10.1139/b98-217
  22. Wu, G., Z. Bai, Y. Wan, H. Shi, X. Huang and S. Nie. 2020. Antidiabetic effects of polysaccharide from azuki bean (Vigna angularis) in type 2 diabetic rats via insulin/PI3K/AKT signaling pathway. Food Hydrocoll. 101:105456.
  23. Yang, K., Z. Tian, C. Chen, L. Luo, B. Zhao, Z. Wang, L. Yu, Y. Li, Y. Sun and W. Li. 2015. Genome sequencing of adzuki bean (Vigna angularis) provides insight into high starch and low fat accumulation and domestication. Proc. Natl. Acad. Sci. U. S. A. 112:13213-13218. https://doi.org/10.1073/pnas.1420949112
  24. Yao, Y., P. Xue, Y. Zhu, Y. Gao and G. Ren. 2015. Antioxidant and immunoregulatory activity of polysaccharides from adzuki beans (Vigna angularis). Int. Food Res. J. 77:251-256. https://doi.org/10.1016/j.foodres.2015.05.029
  25. Yu, T., H.M. Ahn, T. Shen, K. Yoon, H.-J. Jang, Y.J. Lee, H.M. Yang, J.H. Kim, C. Kim and M.H. Han. 2011. Anti-inflammatory activity of ethanol extract derived from Phaseolus angularis beans. J. Ethnopharmacol. 137:1197-1206. https://doi.org/10.1016/j.jep.2011.07.048
  26. Zdravkovic, M., J. Zdravkovic, L. Stankovic and N. Pavlovic. 2005. Combining abilities of inheriting first pod height of some French bean lines - Phaseolus vulgaris L. Genetika 37:65-70. https://doi.org/10.2298/GENSR0501065Z