DOI QR코드

DOI QR Code

Gene Expression of Detoxification Enzymes in Tenebrio molitor after Fungicide Captan Exposure

살진균제인 캡탄 처리 후 갈색거저리의 해독효소 유전자 발현

  • Jang, Ho am (Department of Applied Biology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University) ;
  • Baek, Hyoung-Seon (Department of Applied Biology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University) ;
  • Kim, Bo Bae (Department of Applied Biology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University) ;
  • Kojour, Maryam Ali Mohammadie (Department of Applied Biology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University) ;
  • Patnaik, Bharat Bhusan (P.G. Department of Bio-Sciences and Bio-Technology, Fakir Mohan University) ;
  • Jo, Yong Hun (Department of Applied Biology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University) ;
  • Han, Yeon Soo (Department of Applied Biology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University)
  • Received : 2022.01.14
  • Accepted : 2022.02.22
  • Published : 2022.03.01

Abstract

The application of fungicides is indispensable to global food security, and their use has increased in recent times. Fungicides, directly or indirectly, have impacted insects, leading to genetic and molecular-level changes. Various detoxification mechanisms allow insects to eliminate reactive oxygen species (ROS) toxicity induced by agrochemicals including fungicides. In the present study, we analyzed the mRNA expression levels of detoxifying enzymes in Tenebrio molitor larvae following exposure to non-lethal doses (0.2, 2, and 20 ㎍/µL) of a fungicide captan. Transcripts of peroxidases (POXs), catalases (CATs), superoxide dismutases (SODs), and glutathione-s-transferases (GSTs) were screened from the T. molitor transcriptome database. RT-qPCR analysis showed that TmPOX5 mRNA increased significantly 24 h post-captan exposure. A similar increase was noticed for TmSOD4 mRNA 3 h post-captan exposure. Moreover, the expression of TmCAT2 mRNA increased significantly 24 h post-treatment with 2 ㎍/µL captan. TmGST1 and TmGST3 mRNA expression also increased noticeably after captan exposure. Taken together, these results suggest that TmPOX5 and TmSOD4 mRNA can be used as biomarkers or xenobiotics sensors for captan exposure in T. molitor, while other detoxifying enzymes showed differential expression.

최근 살진균제는 세계 식량 안보에 없어서는 안될 필수 요소이며, 그 사용량은 증가하고 있다. 살진균제는 직접적 또는 간접적으로 곤충에 영향을 미쳐 유전자 및 분자 수준의 변화를 일으킨다. 곤충은 다양한 해독 매커니즘을 통해 살진균제를 포함한 농약으로부터 유발되는 활성산소(ROS) 독성을 제거한다. 본 연구는 살진균제 캡탄의 비치명적 투여량(0.2, 2, and 20 ㎍/µL)을 주입 후 갈색거저리의 유충에서 해독효소의 mRNA 발현량을 분석했다. 갈색거저리의 전사체 분석을 통해 해독 매커니즘 관련 유전자인 퍼옥시다제(POX), 카탈라제(CAT), 슈퍼옥사이드 디스뮤타제(SOD) 및 글루타티온-S-트랜스퍼라제(GST)를 발굴하였다. 처리 24시간 후 TmPOX5 mRNA가 유의하게 증가한 것으로 나타났다. 처리 3 시간 후 TmSOD4의 mRNA가 유사하게 증가하였다. 또한 2 ㎍/µL 처리 24시간 후 TmCAT2의 mRNA 가 유의하게 증가하였다. 캡탄 노출 후 TmGST1 및 TmGST3의 mRNA 발현량도 증가하였다. 결론적으로, TmPOX5 및 TmSOD4 유전자는 갈색거저리에서 캡탄 노출에 대한 바이오마커 또는 생체이물 센서로 작용할 수 있음을 시사한다.

Keywords

Acknowledgement

This study was financially supported by Chonnam National University (Grant number: 2020-3895).

References

  1. Abdollahi, M., Ranjbar, A., Shadnia, S., Nikfar, S., Rezaie, A., 2004. Pesticides and oxidative stress: a review. Med. Sci. Monit. 10, Ra141-147.
  2. Barbehenn, R.V., 2002. Gut-based antioxidant enzymes in a polyphagous and a graminivorous grasshopper. J. Chem. Ecol. 28, 1329-1347. https://doi.org/10.1023/A:1016288201110
  3. Barreda, M., LOpez, F.J., Villarroya, M., Beltran, J., GarciaBaudin, J.M., HernAndez, F., 2006. Residue determination of captan and folpet in vegetable samples by gas chromatography/negative chemical Ionization mass spectrometry. J. AOAC Int. 89, 1080-1087. https://doi.org/10.1093/jaoac/89.4.1080
  4. Brucker, R.M., Funkhouser, L.J., Setia, S., Pauly, R., Bordenstein, S.R., 2012. Insect innate immunity database (IIID): an annotation tool for identifying immune genes in insect genomes. PLoS ONE 7, e45125. https://doi.org/10.1371/journal.pone.0045125
  5. Caverzan, A., Piasecki, C., Chavarria, G., Stewart, C.N., Jr., Vargas, L., 2019. Defenses against ROS in crops and weeds: the effects of interference and herbicides. Int. J. Mol. Sci. 20, 1086. https://doi.org/10.3390/ijms20051086
  6. Edosa, T.T., Jo, Y.H., Keshavarz, M., Bae, Y.M., Kim, D.H., Lee, Y.S., Han, Y.S., 2020. TmSpz6 is essential for regulating the Immune response to Escherichia coli and Staphylococcus aureus infection in Tenebrio molitor. Insects 11, 105. https://doi.org/10.3390/insects11020105
  7. Everich, R., Schiller, C., Whitehead, J., Beavers, M., Barrett, K., 2009. Effects of captan on Apis mellifera brood development under field conditions in California almond orchards. J. Econ. Entomol. 102, 20-29. https://doi.org/10.1603/029.102.0104
  8. Felton, G.W., Summers, C.B., 1995. Antioxidant systems in insects. Arch. Insect Biochem. Physiol. 29, 187-197. https://doi.org/10.1002/arch.940290208
  9. Freyre, E.O., Valencia, A.T., Guzman, D.D., Maldonado, I.C., Ledezma, L.E.B., Carrillo, M.F.Z., Escorza, M.A.Q., 2021. Oxidative stress as a molecular mechanism of exposure to organophosphorus pesticides: a review. Curr. Protein Pept. Sci. 22, 890-897. https://doi.org/10.2174/1389203722666211122092309
  10. Fridovich, I., 1975. Superoxide dismutases. Annu. Rev. Biochem. 44, 147-159. https://doi.org/10.1146/annurev.bi.44.070175.001051
  11. Han, J.B., Li, G.Q., Wan, P.J., Zhu, T.T., Meng, Q.W., 2016. Identification of glutathione S-transferase genes in Leptinotarsa decemlineata and their expression patterns under stress of three insecticides. Pestic. Biochem. Physiol. 133, 26-34. https://doi.org/10.1016/j.pestbp.2016.03.008
  12. He, B., Liu, Z., Wang, Y., Cheng, L., Qing, Q., Duan, J., Xu, J., Dang, X., Zhou, Z., Li, Z., 2021. Imidacloprid activates ROS and causes mortality in honey bees (Apis mellifera) by inducing iron overload. Ecotoxicol. Environ. Saf. 228, 112709. https://doi.org/10.1016/j.ecoenv.2021.112709
  13. He, Q.K., Xu, C.L., Li, Y.P., Xu, Z.R., Luo, Y.S., Zhao, S.C., Wang, H.L., Qi, Z.Q., Liu, Y., 2022. Captan exposure disrupts ovarian homeostasis and affects oocytes quality via mitochondrial dysfunction induced apoptosis. Chemosphere 286, 131625. https://doi.org/10.1016/j.chemosphere.2021.131625
  14. Houbraken, M., Spranghers, T., De Clercq, P., Cooreman-Algoed, M., Couchement, T., De Clercq, G., Verbeke, S., Spanoghe, P., 2016. Pesticide contamination of Tenebrio molitor (Coleoptera: Tenebrionidae) for human consumption. Food Chem. 201, 264-269. https://doi.org/10.1016/j.foodchem.2016.01.097
  15. Irato, P., Santovito, G., 2021. Enzymatic and non-enzymatic molecules with antioxidant function. Antioxidants 10, 579. https://doi.org/10.3390/antiox10040579
  16. Jang, H.A., Patnaik, B.B., Ali Mohammadie Kojour, M., Kim, B.B., Bae, Y.M., Park, K.B., Lee, Y.S., Jo, Y.H., Han, Y.S., 2021. TmSpz-like plays a fundamental role in response to E. coli but not S. aureus or C. albican Infection in Tenebrio molitor via regulation of antimicrobial peptide production. Int. J. Mol. Sci. 22, 10888. https://doi.org/10.3390/ijms221910888
  17. Jia, Z., Misra, H.P., 2007. Reactive oxygen species in in vitro pesticide-induced neuronal cell (SH-SY5Y) cytotoxicity: role of NFkappaB and caspase-3. Free Radic. Biol. Med. 42, 288-298. https://doi.org/10.1016/j.freeradbiomed.2006.10.047
  18. Jo, Y.H., Patnaik, B.B., Hwang, J., Park, K.B., Ko, H.J., Kim, C.E., Bae, Y.M., Jung, W.J., Lee, Y.S., Han, Y.S., 2019. Regulation of the expression of nine antimicrobial peptide genes by TmIMD confers resistance against Gram-negative bacteria. Sci. Rep. 9, 10138. https://doi.org/10.1038/s41598-019-46222-8
  19. Johnson, R.M., Dahlgren, L., Siegfried, B.D., Ellis, M.D., 2013. Acaricide, fungicide and drug interactions in honey bees (Apis mellifera). PLoS ONE 8, e54092. https://doi.org/10.1371/journal.pone.0054092
  20. Kim, S.G., Jo, Y.H., Seong, J.H., Park, K.B., Noh, M.Y., Cho, J.H., Ko, H.J., Kim, C.E., Tindwa, H., Patnaik, B.B., Bang, I.S., Lee, Y.S., Han, Y.S., 2017. TmSR-C, scavenger receptor class C, plays a pivotal role in antifungal and antibacterial immunity in the coleopteran insect Tenebrio molitor. Insect Biochem. Mol. Biol. 89, 31-42. https://doi.org/10.1016/j.ibmb.2017.08.007
  21. Kobayashi, Y., Nojima, Y., Sakamoto, T., Iwabuchi, K., Nakazato, T., Bono, H., Toyoda, A., Fujiyama, A., Kanost, M.R., Tabunoki, H., 2019. Comparative analysis of seven types of superoxide dismutases for their ability to respond to oxidative stress in Bombyx mori. Sci. Rep. 9, 2170. https://doi.org/10.1038/s41598-018-38384-8
  22. Kolawole, A.O., Kolawole, A.N., 2014. Insecticides and bio-insecticides modulate the glutathione-related antioxidant defense system of cowpea storage bruchid (Callosobruchus maculatus). Int. J. Insect Sci. 6, IJIS.S18029.
  23. Kolawole, A.O., Olajuyigbe, F.M., Ajele, J.O., Adedire, C.O., 2014. Activity of the antioxidant defense system in a typical bioinsecticide-and synthetic insecticide-treated cowpea storage beetle Callosobrochus maculatus F. (Coleoptera: Chrysomelidae). Int. J. Insect Sci. 6, IJIS.S19434.
  24. Kostaropoulos, I., Mantzari, A.E., Papadopoulos, A.I., 1996. Alterations of some glutathione S-transferase characteristics during the development of Tenebrio molitor (Insecta: Coleoptera). Insect Biochem. Mol. Biol 26, 963-969. https://doi.org/10.1016/S0965-1748(96)00063-X
  25. Kostaropoulos, I., Papadopoulos, A.I., Metaxakis, A., Boukouvala, E., Papadopoulou-Mourkidou, E., 2001. The role of glutathione S-transferases in the detoxification of some organophosphorus insecticides in larvae and pupae of the yellow mealworm, Tenebrio molitor (Coleoptera: Tenebrionidae). Pest Manag. Sci. 57, 501-508. https://doi.org/10.1002/ps.323
  26. Lu, Q., Sun, Y., Ares, I., Anadon, A., Martinez, M., Martinez-Larranaga, M.R., Yuan, Z., Wang, X., Martinez, M.A., 2019. Deltamethrin toxicity: a review of oxidative stress and metabolism. Environ. Res. 170, 260-281. https://doi.org/10.1016/j.envres.2018.12.045
  27. Nazir, A., Mukhopadhyay, I., Saxena, D.K., Siddiqui, M.S., Chowdhuri, D.K., 2003. Evaluation of toxic potential of captan: Induction of hsp70 and tissue damage in transgenic Drosophila melanogaster (hsp70-lacZ) Bg9. J. Biochem. Mol. Toxicol. 17, 98-107. https://doi.org/10.1002/jbt.10066
  28. Piechowicz, B., Sienko, J., Mytych, J., Grodzicki, P., Podbielska, M., Szpyrka, E., Zareba, L., Piechowicz, I., Sadlo, S., 2021. Assessment of risk to honey bees and honey consumers resulting from the insect exposure to captan, thiacloprid, penthiopyrad, and λ-cyhalothrin used in a commercial apple orchard. Environ. Monit. Assess. 193, 129. https://doi.org/10.1007/s10661-021-08913-6
  29. Pita-Oliveira, M., Rodrigues-Soares, F., 2021. Influence of GSTM1, GSTT1, and GSTP1 genetic polymorphisms on disorders in transplant patients: a systematic review. Drug Metab. Pers. Ther. in press.
  30. Radhakrishnan, R., Alqarawi, A.A., Abd Allah, E.F., 2018. Bioherbicides: current knowledge on weed control mechanism. Ecotoxicol. Environ. Saf. 158, 131-138. https://doi.org/10.1016/j.ecoenv.2018.04.018
  31. Rauf, A., Wilkins, R.M., 2021. Malathion-resistant Tribolium castaneum has enhanced response to oxidative stress, immunity, and fitness. bioRxiv, 2021.2011.2016.468861.
  32. Semren, T., Zunec, S., Pizent, A., 2018. Oxidative stress in triazine pesticide toxicity: a review of the main biomarker findings. Arh. Hig. Rada Toksikol. 69, 109-125. https://doi.org/10.2478/aiht-2018-69-3118
  33. Seo, G.W., Jo, Y.H., Seong, J.H., Park, K.B., Patnaik, B.B., Tindwa, H., Kim, S.A., Lee, Y.S., Kim, Y.J., Han, Y.S., 2016. The Silencing of a 14-3-3ɛ Homolog in Tenebrio molitor leads to increased antimicrobial activity in hemocyte and reduces larval survivability. Genes (Basel) 7, 53. https://doi.org/10.3390/genes7080053
  34. Seong, J.H., Jo, Y.H., Seo, G.W., Park, S., Park, K.B., Cho, J.H., Ko, H.J., Kim, C.E., Patnaik, B.B., Jun, S.A., Choi, Y.S., Kim, Y.W., Bang, I.S., Lee, Y.S., Han, Y.S., 2018. Molecular cloning and effects of Tm14-3-3ζ-silencing on larval survivability against E. coli and C. albicans in Tenebrio molitor. Genes (Basel) 9, 330. https://doi.org/10.3390/genes9070330
  35. Shakir, S.K., Irfan, S., Akhtar, B., Rehman, S.U., Daud, M.K., Taimur, N., Azizullah, A., 2018. Pesticide-induced oxidative stress and antioxidant responses in tomato (Solanum lycopersicum) seedlings. Ecotoxicology 27, 919-935. https://doi.org/10.1007/s10646-018-1916-6
  36. Thannickal, V.J., Fanburg, B.L., 2000. Reactive oxygen species in cell signaling. Am. J. Physiol. Lung Cell. Mol. Physiol. 279, L1005- 1028. https://doi.org/10.1152/ajplung.2000.279.6.l1005
  37. Tindwa, H., Jo, Y.H., Patnaik, B.B., Lee, Y.S., Kang, S.S., Han, Y.S., 2015. Molecular cloning and characterization of autophagy-related gene TmATG8 in Listeria-invaded hemocytes of Tenebrio molitor. Dev. Comp. Immunol. 51, 88-98. https://doi.org/10.1016/j.dci.2015.02.017
  38. Wang, H., Lu, Z., Li, M., Fang, Y., Qu, J., Mao, T., Chen, J., Li, F., Sun, H., Li, B., 2020. Responses of detoxification enzymes in the midgut of Bombyx mori after exposure to low-dose of acetamiprid. Chemosphere 251, 126438. https://doi.org/10.1016/j.chemosphere.2020.126438
  39. Xin, S., Zhang, W., 2020. Construction and analysis of the protein-protein interaction network for the olfactory system of the silkworm Bombyx mori. Arch. Insect Biochem. Physiol. 105, e21737. https://doi.org/10.1002/arch.21737
  40. Yu, L., Wan, F., Dutta, S., Welsh, S., Liu, Z., Freundt, E., Baehrecke, E.H., Lenardo, M., 2006. Autophagic programmed cell death by selective catalase degradation. Proc. Natl. Acad. Sci. U. S. A. 103, 4952-4957. https://doi.org/10.1073/pnas.0511288103
  41. Zhang, J., Lu, A., Kong, L., Zhang, Q., Ling, E., 2014. Functional analysis of insect molting fluid proteins on the protection and regulation of ecdysis. J. Biol. Chem. 289, 35891-35906. https://doi.org/10.1074/jbc.M114.599597
  42. Zhao, H., Yi, X., Hu, Z., Hu, M., Chen, S., Muhammad, R.-u.-H., Dong, X., Gong, L., 2013. RNAi-mediated knockdown of catalase causes cell cycle arrest in SL-1 cells and results in low survival rate of Spodoptera litura (Fabricius). PLoS ONE 8, e59527. https://doi.org/10.1371/journal.pone.0059527
  43. Zhou, C., Yang, H., Wang, Z., Long, G.Y., Jin, D.C., 2018. Protective and detoxifying enzyme activity and ABCG subfamily gene expression in Sogatella furcifera under insecticide stress. Front. Physiol. 9, 1890. https://doi.org/10.3389/fphys.2018.01890
  44. Zhou, Y., Chen, X., Teng, M., Zhang, J., Wang, C., 2019. Toxicity effects of captan on different life stages of zebrafish (Danio rerio). Environ. Toxicol. Pharmacol. 69, 80-85. https://doi.org/10.1016/j.etap.2019.04.003
  45. Zhu, W., Schmehl, D.R., Mullin, C.A., Frazier, J.L., 2014. Four common pesticides, their mixtures and a formulation solvent in the hive environment have high oral toxicity to honey bee larvae. PLoS ONE 9, e77547. https://doi.org/10.1371/journal.pone.0077547