Acknowledgement
This study was financially supported by Chonnam National University (Grant number: 2020-3895).
References
- Abdollahi, M., Ranjbar, A., Shadnia, S., Nikfar, S., Rezaie, A., 2004. Pesticides and oxidative stress: a review. Med. Sci. Monit. 10, Ra141-147.
- Barbehenn, R.V., 2002. Gut-based antioxidant enzymes in a polyphagous and a graminivorous grasshopper. J. Chem. Ecol. 28, 1329-1347. https://doi.org/10.1023/A:1016288201110
- Barreda, M., LOpez, F.J., Villarroya, M., Beltran, J., GarciaBaudin, J.M., HernAndez, F., 2006. Residue determination of captan and folpet in vegetable samples by gas chromatography/negative chemical Ionization mass spectrometry. J. AOAC Int. 89, 1080-1087. https://doi.org/10.1093/jaoac/89.4.1080
- Brucker, R.M., Funkhouser, L.J., Setia, S., Pauly, R., Bordenstein, S.R., 2012. Insect innate immunity database (IIID): an annotation tool for identifying immune genes in insect genomes. PLoS ONE 7, e45125. https://doi.org/10.1371/journal.pone.0045125
- Caverzan, A., Piasecki, C., Chavarria, G., Stewart, C.N., Jr., Vargas, L., 2019. Defenses against ROS in crops and weeds: the effects of interference and herbicides. Int. J. Mol. Sci. 20, 1086. https://doi.org/10.3390/ijms20051086
- Edosa, T.T., Jo, Y.H., Keshavarz, M., Bae, Y.M., Kim, D.H., Lee, Y.S., Han, Y.S., 2020. TmSpz6 is essential for regulating the Immune response to Escherichia coli and Staphylococcus aureus infection in Tenebrio molitor. Insects 11, 105. https://doi.org/10.3390/insects11020105
- Everich, R., Schiller, C., Whitehead, J., Beavers, M., Barrett, K., 2009. Effects of captan on Apis mellifera brood development under field conditions in California almond orchards. J. Econ. Entomol. 102, 20-29. https://doi.org/10.1603/029.102.0104
- Felton, G.W., Summers, C.B., 1995. Antioxidant systems in insects. Arch. Insect Biochem. Physiol. 29, 187-197. https://doi.org/10.1002/arch.940290208
- Freyre, E.O., Valencia, A.T., Guzman, D.D., Maldonado, I.C., Ledezma, L.E.B., Carrillo, M.F.Z., Escorza, M.A.Q., 2021. Oxidative stress as a molecular mechanism of exposure to organophosphorus pesticides: a review. Curr. Protein Pept. Sci. 22, 890-897. https://doi.org/10.2174/1389203722666211122092309
- Fridovich, I., 1975. Superoxide dismutases. Annu. Rev. Biochem. 44, 147-159. https://doi.org/10.1146/annurev.bi.44.070175.001051
- Han, J.B., Li, G.Q., Wan, P.J., Zhu, T.T., Meng, Q.W., 2016. Identification of glutathione S-transferase genes in Leptinotarsa decemlineata and their expression patterns under stress of three insecticides. Pestic. Biochem. Physiol. 133, 26-34. https://doi.org/10.1016/j.pestbp.2016.03.008
- He, B., Liu, Z., Wang, Y., Cheng, L., Qing, Q., Duan, J., Xu, J., Dang, X., Zhou, Z., Li, Z., 2021. Imidacloprid activates ROS and causes mortality in honey bees (Apis mellifera) by inducing iron overload. Ecotoxicol. Environ. Saf. 228, 112709. https://doi.org/10.1016/j.ecoenv.2021.112709
- He, Q.K., Xu, C.L., Li, Y.P., Xu, Z.R., Luo, Y.S., Zhao, S.C., Wang, H.L., Qi, Z.Q., Liu, Y., 2022. Captan exposure disrupts ovarian homeostasis and affects oocytes quality via mitochondrial dysfunction induced apoptosis. Chemosphere 286, 131625. https://doi.org/10.1016/j.chemosphere.2021.131625
- Houbraken, M., Spranghers, T., De Clercq, P., Cooreman-Algoed, M., Couchement, T., De Clercq, G., Verbeke, S., Spanoghe, P., 2016. Pesticide contamination of Tenebrio molitor (Coleoptera: Tenebrionidae) for human consumption. Food Chem. 201, 264-269. https://doi.org/10.1016/j.foodchem.2016.01.097
- Irato, P., Santovito, G., 2021. Enzymatic and non-enzymatic molecules with antioxidant function. Antioxidants 10, 579. https://doi.org/10.3390/antiox10040579
- Jang, H.A., Patnaik, B.B., Ali Mohammadie Kojour, M., Kim, B.B., Bae, Y.M., Park, K.B., Lee, Y.S., Jo, Y.H., Han, Y.S., 2021. TmSpz-like plays a fundamental role in response to E. coli but not S. aureus or C. albican Infection in Tenebrio molitor via regulation of antimicrobial peptide production. Int. J. Mol. Sci. 22, 10888. https://doi.org/10.3390/ijms221910888
- Jia, Z., Misra, H.P., 2007. Reactive oxygen species in in vitro pesticide-induced neuronal cell (SH-SY5Y) cytotoxicity: role of NFkappaB and caspase-3. Free Radic. Biol. Med. 42, 288-298. https://doi.org/10.1016/j.freeradbiomed.2006.10.047
- Jo, Y.H., Patnaik, B.B., Hwang, J., Park, K.B., Ko, H.J., Kim, C.E., Bae, Y.M., Jung, W.J., Lee, Y.S., Han, Y.S., 2019. Regulation of the expression of nine antimicrobial peptide genes by TmIMD confers resistance against Gram-negative bacteria. Sci. Rep. 9, 10138. https://doi.org/10.1038/s41598-019-46222-8
- Johnson, R.M., Dahlgren, L., Siegfried, B.D., Ellis, M.D., 2013. Acaricide, fungicide and drug interactions in honey bees (Apis mellifera). PLoS ONE 8, e54092. https://doi.org/10.1371/journal.pone.0054092
- Kim, S.G., Jo, Y.H., Seong, J.H., Park, K.B., Noh, M.Y., Cho, J.H., Ko, H.J., Kim, C.E., Tindwa, H., Patnaik, B.B., Bang, I.S., Lee, Y.S., Han, Y.S., 2017. TmSR-C, scavenger receptor class C, plays a pivotal role in antifungal and antibacterial immunity in the coleopteran insect Tenebrio molitor. Insect Biochem. Mol. Biol. 89, 31-42. https://doi.org/10.1016/j.ibmb.2017.08.007
- Kobayashi, Y., Nojima, Y., Sakamoto, T., Iwabuchi, K., Nakazato, T., Bono, H., Toyoda, A., Fujiyama, A., Kanost, M.R., Tabunoki, H., 2019. Comparative analysis of seven types of superoxide dismutases for their ability to respond to oxidative stress in Bombyx mori. Sci. Rep. 9, 2170. https://doi.org/10.1038/s41598-018-38384-8
- Kolawole, A.O., Kolawole, A.N., 2014. Insecticides and bio-insecticides modulate the glutathione-related antioxidant defense system of cowpea storage bruchid (Callosobruchus maculatus). Int. J. Insect Sci. 6, IJIS.S18029.
- Kolawole, A.O., Olajuyigbe, F.M., Ajele, J.O., Adedire, C.O., 2014. Activity of the antioxidant defense system in a typical bioinsecticide-and synthetic insecticide-treated cowpea storage beetle Callosobrochus maculatus F. (Coleoptera: Chrysomelidae). Int. J. Insect Sci. 6, IJIS.S19434.
- Kostaropoulos, I., Mantzari, A.E., Papadopoulos, A.I., 1996. Alterations of some glutathione S-transferase characteristics during the development of Tenebrio molitor (Insecta: Coleoptera). Insect Biochem. Mol. Biol 26, 963-969. https://doi.org/10.1016/S0965-1748(96)00063-X
- Kostaropoulos, I., Papadopoulos, A.I., Metaxakis, A., Boukouvala, E., Papadopoulou-Mourkidou, E., 2001. The role of glutathione S-transferases in the detoxification of some organophosphorus insecticides in larvae and pupae of the yellow mealworm, Tenebrio molitor (Coleoptera: Tenebrionidae). Pest Manag. Sci. 57, 501-508. https://doi.org/10.1002/ps.323
- Lu, Q., Sun, Y., Ares, I., Anadon, A., Martinez, M., Martinez-Larranaga, M.R., Yuan, Z., Wang, X., Martinez, M.A., 2019. Deltamethrin toxicity: a review of oxidative stress and metabolism. Environ. Res. 170, 260-281. https://doi.org/10.1016/j.envres.2018.12.045
- Nazir, A., Mukhopadhyay, I., Saxena, D.K., Siddiqui, M.S., Chowdhuri, D.K., 2003. Evaluation of toxic potential of captan: Induction of hsp70 and tissue damage in transgenic Drosophila melanogaster (hsp70-lacZ) Bg9. J. Biochem. Mol. Toxicol. 17, 98-107. https://doi.org/10.1002/jbt.10066
- Piechowicz, B., Sienko, J., Mytych, J., Grodzicki, P., Podbielska, M., Szpyrka, E., Zareba, L., Piechowicz, I., Sadlo, S., 2021. Assessment of risk to honey bees and honey consumers resulting from the insect exposure to captan, thiacloprid, penthiopyrad, and λ-cyhalothrin used in a commercial apple orchard. Environ. Monit. Assess. 193, 129. https://doi.org/10.1007/s10661-021-08913-6
- Pita-Oliveira, M., Rodrigues-Soares, F., 2021. Influence of GSTM1, GSTT1, and GSTP1 genetic polymorphisms on disorders in transplant patients: a systematic review. Drug Metab. Pers. Ther. in press.
- Radhakrishnan, R., Alqarawi, A.A., Abd Allah, E.F., 2018. Bioherbicides: current knowledge on weed control mechanism. Ecotoxicol. Environ. Saf. 158, 131-138. https://doi.org/10.1016/j.ecoenv.2018.04.018
- Rauf, A., Wilkins, R.M., 2021. Malathion-resistant Tribolium castaneum has enhanced response to oxidative stress, immunity, and fitness. bioRxiv, 2021.2011.2016.468861.
- Semren, T., Zunec, S., Pizent, A., 2018. Oxidative stress in triazine pesticide toxicity: a review of the main biomarker findings. Arh. Hig. Rada Toksikol. 69, 109-125. https://doi.org/10.2478/aiht-2018-69-3118
- Seo, G.W., Jo, Y.H., Seong, J.H., Park, K.B., Patnaik, B.B., Tindwa, H., Kim, S.A., Lee, Y.S., Kim, Y.J., Han, Y.S., 2016. The Silencing of a 14-3-3ɛ Homolog in Tenebrio molitor leads to increased antimicrobial activity in hemocyte and reduces larval survivability. Genes (Basel) 7, 53. https://doi.org/10.3390/genes7080053
- Seong, J.H., Jo, Y.H., Seo, G.W., Park, S., Park, K.B., Cho, J.H., Ko, H.J., Kim, C.E., Patnaik, B.B., Jun, S.A., Choi, Y.S., Kim, Y.W., Bang, I.S., Lee, Y.S., Han, Y.S., 2018. Molecular cloning and effects of Tm14-3-3ζ-silencing on larval survivability against E. coli and C. albicans in Tenebrio molitor. Genes (Basel) 9, 330. https://doi.org/10.3390/genes9070330
- Shakir, S.K., Irfan, S., Akhtar, B., Rehman, S.U., Daud, M.K., Taimur, N., Azizullah, A., 2018. Pesticide-induced oxidative stress and antioxidant responses in tomato (Solanum lycopersicum) seedlings. Ecotoxicology 27, 919-935. https://doi.org/10.1007/s10646-018-1916-6
- Thannickal, V.J., Fanburg, B.L., 2000. Reactive oxygen species in cell signaling. Am. J. Physiol. Lung Cell. Mol. Physiol. 279, L1005- 1028. https://doi.org/10.1152/ajplung.2000.279.6.l1005
- Tindwa, H., Jo, Y.H., Patnaik, B.B., Lee, Y.S., Kang, S.S., Han, Y.S., 2015. Molecular cloning and characterization of autophagy-related gene TmATG8 in Listeria-invaded hemocytes of Tenebrio molitor. Dev. Comp. Immunol. 51, 88-98. https://doi.org/10.1016/j.dci.2015.02.017
- Wang, H., Lu, Z., Li, M., Fang, Y., Qu, J., Mao, T., Chen, J., Li, F., Sun, H., Li, B., 2020. Responses of detoxification enzymes in the midgut of Bombyx mori after exposure to low-dose of acetamiprid. Chemosphere 251, 126438. https://doi.org/10.1016/j.chemosphere.2020.126438
- Xin, S., Zhang, W., 2020. Construction and analysis of the protein-protein interaction network for the olfactory system of the silkworm Bombyx mori. Arch. Insect Biochem. Physiol. 105, e21737. https://doi.org/10.1002/arch.21737
- Yu, L., Wan, F., Dutta, S., Welsh, S., Liu, Z., Freundt, E., Baehrecke, E.H., Lenardo, M., 2006. Autophagic programmed cell death by selective catalase degradation. Proc. Natl. Acad. Sci. U. S. A. 103, 4952-4957. https://doi.org/10.1073/pnas.0511288103
- Zhang, J., Lu, A., Kong, L., Zhang, Q., Ling, E., 2014. Functional analysis of insect molting fluid proteins on the protection and regulation of ecdysis. J. Biol. Chem. 289, 35891-35906. https://doi.org/10.1074/jbc.M114.599597
- Zhao, H., Yi, X., Hu, Z., Hu, M., Chen, S., Muhammad, R.-u.-H., Dong, X., Gong, L., 2013. RNAi-mediated knockdown of catalase causes cell cycle arrest in SL-1 cells and results in low survival rate of Spodoptera litura (Fabricius). PLoS ONE 8, e59527. https://doi.org/10.1371/journal.pone.0059527
- Zhou, C., Yang, H., Wang, Z., Long, G.Y., Jin, D.C., 2018. Protective and detoxifying enzyme activity and ABCG subfamily gene expression in Sogatella furcifera under insecticide stress. Front. Physiol. 9, 1890. https://doi.org/10.3389/fphys.2018.01890
- Zhou, Y., Chen, X., Teng, M., Zhang, J., Wang, C., 2019. Toxicity effects of captan on different life stages of zebrafish (Danio rerio). Environ. Toxicol. Pharmacol. 69, 80-85. https://doi.org/10.1016/j.etap.2019.04.003
- Zhu, W., Schmehl, D.R., Mullin, C.A., Frazier, J.L., 2014. Four common pesticides, their mixtures and a formulation solvent in the hive environment have high oral toxicity to honey bee larvae. PLoS ONE 9, e77547. https://doi.org/10.1371/journal.pone.0077547