Acknowledgement
본 연구 성과물(리뷰 논문)은 농촌진흥청 연구사업 (세부과제번호: PJ016297032021)의 지원에 의해 이뤄진 것임.
References
- Alkhaibari, A.M., Carolino, A.T., Yavasoglu, S.I., Maffeis, T., Mattoso, T.C., Bull, J.C., Samuels, R.I., Butt, T.M., 2016. Metarhizium brunneum blastospore pathogenesis in Aedes aegypti larvae: attack on several fronts accelerates mortality. PLoS Pathog. 12, e1005715. https://doi.org/10.1371/journal.ppat.1005715
- Arthurs, S., Dara, S.K., 2019. Microbial biopesticides for invertebrate pests and their markets in the United States. J. Invertebr. Pathol. 165, 13-21. https://doi.org/10.1016/j.jip.2018.01.008
- Avery, P.B., Pick, D.A., Aristizabal, L.F., Kerrigan, J., Powell, C.A., Rogers, M.E., Arthurs, S.P., 2013. Compatibility of Isaria fumosorosea (Hypocreales: Cordycipitaceae) blastospores with agricultural chemicals used for management of the Asian citrus psyllid, Diaphorina citri (Hemiptera: Liviidae). Insects 4, 694-711. https://doi.org/10.3390/insects4040694
- Beys da Silva, W.O., Santi, L., Correa, A.P., Silva, L.A., Bresciani, F. R., Schrank, A., Vainstein, M.H., 2010. The entomopathogen Metarhizium anisopliae can modulate the secretion of lipolytic enzymes in response to different substrates including components of arthropod cuticle. Fun. Biol. 114, 911-916. https://doi.org/10.1016/j.funbio.2010.08.007
- Butt, T.M., Coates, C.J., Dubovskiy, I.M., Ratcliffe, N.A., 2016. Entomopathogenic fungi: new insights into host-pathogen interactions. Adv. Genet. 94, 307-364. https://doi.org/10.1016/bs.adgen.2016.01.006
- Chandler, D., 2017. Basic and applied research on entomopathogenic fungi. In: Lacey L.A. (Ed.), Microbial control of insect and mite pests. Academic Press, Amsterdam, pp. 69-89.
- Chen, J., Lai, Y., Wang, L., Zhai, S., Zou, G., Zhou, Z., Cui, C., Wang, S., 2017. CRISPR/Cas9-mediated efficient genome editing via blastospore-based transformation in entomopathogenic fungus Beauveria bassiana. Sci. Rep. 7, 1-10. https://doi.org/10.1038/s41598-016-0028-x
- Conlon, B.H., Mitchell, J., De Beer, Z.W., Caroe, C., Gilbert, M.T.P., Eilenberg, J., Poulsen, M., Henrik, H., 2017. Draft genome of the fungus-growing termite pathogenic fungus Ophiocordyceps bispora (Ophiocordycipitaceae, Hypocreales, Ascomycota). Data Brief. 11, 537-542. https://doi.org/10.1016/j.dib.2017.02.051
- Dara, S.K., 2015. Root aphids and their management in organic celery. CAPCA Advi. 18, 65-70.
- Dara, S.K., 2016. IPM solutions for insect pests in California strawberries: efficacy of botanical, chemical, mechanical, and microbial options. CAPCA Advi. 19, 40-46.
- Davidson, E.W., 2012. History of insect pathology. In: Vega, F.E., Kaya, H.K. (Eds.), Insect pathology, Elsevier, London, pp. 13-28.
- de Bary, A., 1866. Morphologie und Physiologie der Pilze, Flechten und Myxomyceten, Wilhelm Engelmann, Leipzig.
- de Faria, M.R., Wraight, S.P., 2007. Mycoinsecticides and mycoacaricides: a comprehensive list with worldwide coverage and international classification of formulation types. Biol. control. 43, 237-256. https://doi.org/10.1016/j.biocontrol.2007.08.001
- Dietsch, R., Jakobs-Schonwandt, D., Grunberger, A., Patel, A., 2021. Desiccation-tolerant fungal blastospores: from production to application. Curr. Res. Biotechnol. 3, 323-339. https://doi.org/10.1016/j.crbiot.2021.11.005
- Ding, J.L., Peng, Y.J., Chu, X.L., Feng, M.G., Ying, S.H., 2018. Autophagy-related gene BbATG11 is indispensable for pexophagy and mitophagy, and contributes to stress response, conidiation and virulence in the insect mycopathogen Beauveria bassiana. Environ. Microbiol. 20, 3309-3324. https://doi.org/10.1111/1462-2920.14329
- Engel, M.S., Grimaldi, D.A., 2004. New light shed on the oldest insect. Nature 427, 627-630. https://doi.org/10.1038/nature02291
- Fernandes, E.K., Rangel, D.E., Braga, G.U., Roberts, D.W., 2015. Tolerance of entomopathogenic fungi to ultraviolet radiation: a review on screening of strains and their formulation. Curr. Genet. 61, 427-440. https://doi.org/10.1007/s00294-015-0492-z
- Gasmi, L., Baek, S., Kim, J.C., Kim, S., Lee, M.R., Park, S.E., Shin, T.Y., Lee, S.J., Parker, B.L., Kim, J.S., 2021. Gene diversity explains variation in biological features of insect killing fungus, Beauveria bassiana. Sci. Report 11, 91. https://doi.org/10.1038/s41598-020-78910-1
- Hajek, A.E., 1997. Ecology of terrestrial fungal entomopathogens. In: Jones J.G. (Ed.) Advances in microbial ecology, Springer, Boston, pp. 193-249.
- Holder, D.J., Kirkland, B.H., Lewis, M.W., Keyhani, N.O., 2007. Surface characteristics of the entomopathogenic fungus Beauveria (Cordyceps) bassiana. Microbiology 153, 3448-3457. https://doi.org/10.1099/mic.0.2007/008524-0
- Holliday, J., Cleaver, M.P., 2008. Medicinal value of the caterpillar fungi species of the genus Cordyceps (Fr.) Link (Ascomycetes). a review. Int. J. Med. Mushrooms 10, 219-234. https://doi.org/10.1615/IntJMedMushr.v10.i3.30
- Imoulan, A., Wu, H. J., Lu, W. L., Li, Y., Li, B.B., Yang, R.H., Wang, X.L., Kirk, P.M., Yao, Y.J., 2016. Beauveria medogensis sp. nov., a new fungus of the entomopathogenic genus from China. J. Invertebr. Pathol. 139, 74-81. https://doi.org/10.1016/j.jip.2016.07.006
- Jaronski, S.T., Jackson, M.A., 2012. Mass production of entomopathogenic Hypocreales. In: Lacey, L.A. (Ed.) Manual of techniques in invertebrate pathology, Academic Press, San Diego, pp. 257-286.
- Jitendra, M., Kiran, D., Ambika, K., Priya, S., Neha, K., Sakshi, D., 2012. Biomass production of entomopathogenic fungi using various agro products in Kota region, India. Int. J. Biol. Sci. 1, 12-16.
- Kim, J.C., Baek, S., Park, S.E., Kim, S., Lee, M.R., Jo, M., Im, J.S., Ha, P., Kim, J.S., Shin, T.Y., 2020a. Colonization of Metarhizium anisopliae on the surface of pine tree logs: A promising biocontrol strategy for the Japanese pine sawyer, Monochamus alternatus. Fungal biol. 124, 125-134. https://doi.org/10.1016/j.funbio.2019.12.006
- Kim, J.C., Lee, M.R., Kim, S., Lee, S.J., Park, S.E., Baek, S., Gasmi, L., Shin, T.Y., Kim, J.S., 2019. Long-term storage stability of Beauveria bassiana ERL836 granules as fungal biopesticide. J. Asia Pac. Entomol. 22, 537-542. https://doi.org/10.1016/j.aspen.2019.04.001
- Kim, J.S., Je, Y.H., Skinner, M., Parker, B.L., 2013. An oil-based formulation of Isaria fumosorosea blastospores for management of greenhousewhitefly Trialeurodes vaporariorum (Homoptera: Aleyrodidae). Pest Manag. Sci. 69, 576-581. https://doi.org/10.1002/ps.3497
- Kim, J.S., Kassa, A., Skinner, M., Hata, T., Parker, B.L., 2011. Production of thermotolerant entomopathogenic fungal conidia on millet grain. J. Ind. Microbiol. Biotechnol. 38, 697-704. https://doi.org/10.1007/s10295-010-0850-2
- Kim, J.S., Lee, S.J., Skinner, M., Parker, B.L., 2014. A novel approach: Beauveria bassiana granules applied to nursery soil for management of rice water weevils in paddy fields. Pest Manag. Sci. 70, 1186-1191. https://doi.org/10.1002/ps.3817
- Kim, S., Kim, J.C., Lee, S.J., Lee, M.R., Park, S.E., Li, D., Baek, S., Shin, T.Y., Kim, J.S., 2020b. Beauveria bassiana ERL836 and JEF-007 with similar virulence show different gene expression when interacting with cuticles of western flower thrips, Frankniella occidentalis. BMC Genomics 21, 836. https://doi.org/10.1186/s12864-020-07253-y
- Ko, S.H., Shin, T.Y., Lee, J.Y., Choi, C.J., Woo, S.D., 2021. Screening and evaluation of acaropathogenic fungi against the bulb mite Rhizoglyphus robini. J. Asia Pac. Entomol. 24, 991-996. https://doi.org/10.1016/j.aspen.2021.09.005
- Lacey, L.A., Frutos, R., Kaya, H., Vail, P., 2001. Insect pathogens as biological control agents: do they have a future? Biol. control 21, 230-248. https://doi.org/10.1006/bcon.2001.0938
- Lacey, L.A., Grzywacz, D., Shapiro-Ilan, D.I., Frutos, R., Brown-bridge, M., Goettel, M.S., 2015. Insect pathogens as biological control agents: back to the future. J. Invertebr. Pathol. 132, 1-41. https://doi.org/10.1016/j.jip.2015.07.009
- Lee, J.Y., Woo, R.M., Choi, C.J., Shin, T.Y., Gwak, W.S., Woo, S.D., 2019. Beauveria bassiana for the simultaneous control of Aedes albopictus and Culex pipiens mosquito adults shows high conidia persistence and productivity. AMB Express 9, 1-9. https://doi.org/10.1186/s13568-018-0728-7
- Lee, M.R., Kim, J.C., Park, S.E., Lee, S.J., Kim, W.J., Lee, D.H., Kim, J.S., 2021. Interactive gene expression between Metarhizium anisopliae JEF-290 and longhorned tick Haemaphysalis longicornis at early stage of infection. Front. Physiol. 12, 643389. https://doi.org/10.3389/fphys.2021.643389
- Lee, M.R., Li, D., Lee, S.J., Kim, J.C., Kim, S., Park, S.E., Baek, S., Shin, T.Y., Lee, D.H., Kim, J.S., 2019. Use of Metarhizum aniopliae sl to control soil-dwelling longhorned tick, Haemaphysalis longicornis. J. Invertebr. Pathol. 166, 107230. https://doi.org/10.1016/j.jip.2019.107230
- Lee, S.J., Kim, S., Kim, J.C., Lee, M.R., Hossain, M.S., Shin, T.S., Kim, T.H., Kim, J.S., 2017. Entomopathogenic Beauveria bassiana granules to control soil-dwelling stage of western flower thrips, Frankliniella occidentalis (Thysanoptera: Thripidae). Biocontrol 62, 639-648. https://doi.org/10.1007/s10526-017-9818-8
- Lee, S.J., Lee, M.R., Kim, S., Kim, J.C., Park, S.E., Li, D., Shin, T.Y., Nai, Y.S., Kim. J.S., 2018. Genomic analysis of the insect-killing fungus Beauveria bassiana JEF-007 as a biopesticide. Sci. Report. 8, 12388. https://doi.org/10.1038/s41598-018-30856-1
- Lee, W.W., Shin, T.Y., Bae, S.M., Woo, S.D., 2015. Screening and evaluation of entomopathogenic fungi against the green peach aphid, Myzus persicae, using multiple tools. J. Asia Pac. Entomol. 18, 607-615. https://doi.org/10.1016/j.aspen.2015.07.012
- Li, D., Park, S.E., Lee, M.R., Kim, J.C., Lee, S.J., Kim, J.S., 2021. Soil application of Beauveria bassiana JEF-350 granules to control melon thrips, Thrips palmi Karny (Thysanoptera: Thripidae). J. Asia-Pacific Entomol. 24, 636-644. https://doi.org/10.1016/j.aspen.2021.05.010
- Lohse, R., Jakobs-Schonwandt, D., Vidal, S., Patel, A.V., 2015. Evaluation of new fermentation and formulation strategies for a high endophytic establishment of Beauveria bassiana in oilseed rape plants. Biol. control, 88, 26-36. https://doi.org/10.1016/j.biocontrol.2015.05.002
- Lovett, B., St. Leger, R.J., 2017. The insect pathogens. Microbiol. Spectr. 5, 5-2.
- Lovett, B., St. Leger, R.J., 2018. Genetically engineering better fungal biopesticides. Pest Manag. Sci. 74, 781-789. https://doi.org/10.1002/ps.4734
- Market Research, 2020. Global Beauveria bassiana insecticide market growth (Status and Outlook) 2020-2025, LP Information, Inc., USA. https://www.marketresearch.com/LP-Information-Inc-v4134/Global-Beauveria-Bassiana-Insecticide-Growth-13515169/ (accessed on 22 December, 2020).
- Misof, B., Liu, S., Meusemann, K., Peters, R.S., Donath, A., Mayer, C., Frandsen, P.B., Ware, J., Flouri, T., Beutel, R.G., 2014. Phylogenomics resolves the timing and pattern of insect evolution. Science 346, 763-767. https://doi.org/10.1126/science.1257570
- Molnar, I., Gibson, D.M., Krasnoff, S.B., 2010. Secondary metabolites from entomopathogenic Hypocrealean fungi. Nat. Prod. Rep. 27, 1241-1275. https://doi.org/10.1039/c001459c
- Nishi, O., Sushida, H., Higashi, Y., Iida, Y., 2021. Epiphytic and endophytic colonisation of tomato plants by the entomopathogenic fungus Beauveria bassiana strain GHA. Mycology 12, 39-47. https://doi.org/10.1080/21501203.2019.1707723
- Park, S.E., Kim, J.C., Lee, S.J., Lee, M.R., Kim, S., Li, D., Baek, S., Han, J.H., Kim, J.J., Koo, K.B., 2018. Solid cultures of thrips-pathogenic fungi Isaria javanica strains for enhanced conidial productivity and thermotolerance. J. Asia Pac. Entomol. 21, 1102-1109. https://doi.org/10.1016/j.aspen.2018.08.005
- Pereira, H., Willeput, R., Detrain, C., 2021. A fungus infected environment does not alter the behaviour of foraging ants. Sci. Rep. 11, 1-13. https://doi.org/10.1038/s41598-020-79139-8
- Rana, S., Beer, A., Birkett, R., Pegg, J.R., 2019. Biologicals 2019 - An analysis of corporate, product and regulatory news in 2018/2019. Agrow Agiribusiness Intelligence. https://docplayer.net/136726222-Agribusiness-intelligence-biologicals-an-analysis-of-corporate-product-and-regulatory-developments-in-2018-2019.html (accessed on January, 2021).
- Rangel, D.E., Braga, G.U., Fernandes, E.K., Keyser, C.A., Hallsworth, J.E., Roberts, D.W., 2015. Stress tolerance and virulence of insect-pathogenic fungi are determined by environmental conditions during conidial formation. Curr. Genet. 61, 383-404. https://doi.org/10.1007/s00294-015-0477-y
- Resquin-Romero, G., Garrido-Jurado, I., Delso, C., Rios-Moreno, A., Quesada-Moraga, E., 2016. Transient endophytic colonizations of plants improve the outcome of foliar applications of mycoinsecticides against chewing insects. J. Invertebr. Pathol. 136, 23-31. https://doi.org/10.1016/j.jip.2016.03.003
- Ruiu, L., 2018. Microbial biopesticides in agroecosystems. Agronomy 8, 235. https://doi.org/10.3390/agronomy8110235
- Santos, M.P., Dias, L.P., Ferreira, P.C., Pasin, L.A., Rangel, D.E., 2011. Cold activity and tolerance of the entomopathogenic fungus Tolypocladium spp. to UV-B irradiation and heat. J. Invertebr. Pathol. 108, 209-213. https://doi.org/10.1016/j.jip.2011.09.001
- Sevim, A., Donzelli, B.G., Wu, D., Demirbag, Z., Gibson, D.M., Turgeon, B.G., 2012. Hydrophobin genes of the entomopathogenic fungus, Metarhizium brunneum, are differentially expressed and corresponding mutants are decreased in virulence. Curr. Genet. 58, 79-92. https://doi.org/10.1007/s00294-012-0366-6
- Shah, P., Pell, J., 2003. Entomopathogenic fungi as biological control agents. Appl. Microbiol. Biotechnol. 61, 413-423. https://doi.org/10.1007/s00253-003-1240-8
- Shapiro-Ilan, D.I., Bruck, D.J., Lacey, L.A., 2012. Principles of epizootiology and microbial control. In: Vega, F., Kaya, H.K. (Eds.), Insect pathology. Elsevier, San Diego, pp. 29-72.
- Shin, T.Y., Bae, S.M., Kim, D.J., Yun, H.G., Woo, S.D., 2017. Evaluation of virulence, tolerance to environmental factors and antimicrobial activities of entomopathogenic fungi against two-spotted spider mite, Tetranychus urticae. Mycoscience 58, 204-212. https://doi.org/10.1016/j.myc.2017.02.002
- Shin, T.Y., Lee, M.R., Park, S.E., Lee, S.J., Kim, W.J., Kim, J.S., 2020. Pathogenesis-related genes of entomopathogenic fungi. Arch. Insect Biochem. Physiol. 105, e21747. https://doi.org/10.1002/arch.21747
- Shin, T.Y., Lee, W.W., Ko, S.H., Choi, J.B., Bae, S.M., Choi, J.Y., Lee, K.S., Je, Y.H., Jin, B.R., Woo, S.D., 2013. Distribution and characterisation of entomopathogenic fungi from Korean soils. Biocontrol Sci. Technol. 23, 288-304. https://doi.org/10.1080/09583157.2012.756853
- Song, M.H., Yu, J.S., Kim, S., Lee, S.J., Kim, J.C., Nai, Y.S., Shin, T.Y., Kim, J.S., 2019. Downstream processing of Beauveria bassiana and Metarhizium anisopliae-based fungal biopesticides against Riptortus pedestris: solid culture and delivery of conidia. Biocontrol Sci. Technol. 29, 514-532. https://doi.org/10.1080/09583157.2019.1566951
- Srinivasan, R., Sevgan, S., Ekesi, S., Tamo, M., 2019. Biopesticide based sustainable pest management for safer production of vegetable legumes and brassicas in Asia and Africa. Pest Manag. Sci. 75, 2446-2454. https://doi.org/10.1002/ps.5480
- St Leger, R., Screen, S., 2001. Prospects for strain improvement of fungal pathogens of insects and weeds. In: Butt, T., Jackson, C., Magan, N. (Eds.), Fungi as biocontrol agents: progress, problems and potential. CABI, Walingford, pp. 219-237.
- Stork, N.E., 2018. How many species of insects and other terrestrial arthropods are there on Earth?. Annu. Rev. Entomol. 63, 31-45. https://doi.org/10.1146/annurev-ento-020117-043348
- Sung, G.H., Poinar Jr, G.O., Spatafora, J.W., 2008. The oldest fossil evidence of animal parasitism by fungi supports a Cretaceous diversification of fungal-arthropod symbioses. Mol. Phylogenet. Evol. 49, 495-502. https://doi.org/10.1016/j.ympev.2008.08.028
- Valero-Jimenez, C.A., Wiegers, H., Zwaan, B.J., Koenraadt, C.J., van Kan, J.A., 2016. Genes involved in virulence of the entomopathogenic fungus Beauveria bassiana. J. Invertebr. Pathol. 133, 4149.
- Vega, F.E., Goettel, M.S., Blackwell, M., Chandler, D., Jackson, M.A., Keller, S., Koike, M., Maniania, N.K., Monzon, A., Ownley, B.H., Pell, J.K., Rangel, D.E.N., Roy, H.E., 2009. Fungal entomopathogens: new insights on their ecology. Fungal Ecol. 2, 149-159. https://doi.org/10.1016/j.funeco.2009.05.001
- Vega, F.E., Posada, F., Catherine Aime, M., Pava-Ripoll, M., Infante, F., Rehner, S.A., 2008. Entomopathogenic fungal endophytes. Biol. Control. 46, 72-82. https://doi.org/10.1016/j.biocontrol.2008.01.008
- Wang, C., St Leger, R.J., 2007. The MAD1 adhesin of Metarhizium anisopliae links adhesion with blastospore production and virulence to insects, and the MAD2 adhesin enables attachment to plants. Eukaryot. Cell 6, 808-816. https://doi.org/10.1128/EC.00409-06
- Wang, C., St. Leger, R.J., 2005. Developmental and transcriptional responses to host and nonhost cuticles by the specific locust pathogen Metarhizium anisopliae var. acridum. Eukaryot. Cell 4, 937-947. https://doi.org/10.1128/EC.4.5.937-947.2005
- Wang, C., Wang, S., 2017. Insect pathogenic fungi: genomics, molecular interactions, and genetic improvements. Annu. Rev. Entomol. 62, 73-90. https://doi.org/10.1146/annurev-ento-031616-035509
- Wei, G., Lai, Y., Wang, G., Chen, H., Li, F., Wang, S., 2017. Insect pathogenic fungus interacts with the gut microbiota to accelerate mosquito mortality. Proc. Natl. Acad. Sci. 114, 5994-5999. https://doi.org/10.1073/pnas.1703546114
- Xu, C., Zhang, X., Qian, Y., Chen, X., Liu, R., Zeng, G., Zhao, H., Fang, W., 2014. A high-throughput gene disruption methodology for the entomopathogenic fungus Metarhizium robertsii. PLoS ONE 9, e107657. https://doi.org/10.1371/journal.pone.0107657
- Yang, Y.T., Lee, S.J., Nai, Y.S., Kim, S., Kim, J.S., 2016. Up-regulation of carbon metabolism-related glyoxylate cycle and toxin production in Beauveria bassiana JEF-007 during infection of bean bug, Riptortus pedestris (Hemiptera: Alydidae). Fun. Biol. 120, 1236-1248. https://doi.org/10.1016/j.funbio.2016.07.008
- Yu, J.S., Lee, S.J., Shin, T.Y., Kim, W.J., Kim, J.S., 2020. Enhanced thermotolerance of entomopathogenic Beauveria bassiana and Metarhizium anisopliae JEF-isolates by substrate modification. Int. J. Indus. Entomol. 41, 28-35. https://doi.org/10.7852/IJIE.2020.41.2.28
- Zhao, X., Yang, X., Lu, Z., Wang, H., He, Z., Zhou, G., Zhang, Y., 2019. MADS-box transcription factor Mcm1 controls cell cycle, fungal development, cell integrity and virulence in the filamentous insect pathogenic fungus Beauveria bassiana. Environ. Microbiol. 21, 3392-3416. https://doi.org/10.1111/1462-2920.14629
- Zimmermann, G., 1993. The entomopathogenic fungus Metarhizium anisopliae and its potential as a biocontrol agent. Pestic. Sci. 37, 375-379. https://doi.org/10.1002/ps.2780370410