Acknowledgement
저자가 곤충생리학 학문 분야에 첫걸음을 내딛는 데 바르게 지도하여 주신 부경생 교수님께 본 종설 논문 작성을 통해 깊은 감사와 그리움을 전합니다. 이 논문은 안동대학교 기본연구지원사업에 의하여 지원되었다.
References
- Ahmed, S., Kim, Y., 2019. PGE2 mediates cytoskeletal rearrangement of hemocytes via Cdc42, a small G protein, to activate actin-remodeling factors in Spodoptera exigua (Lepidoptera: Noctuidae). Arch. Insect Biochem. Physiol. 102, e21607. https://doi.org/10.1002/arch.21607
- Ahmed, S., Kim, Y., 2020. Prostaglandin catabolism in Spodoptera exigua, a lepidopteran insect. J. Exp. Biol. 223, jeb233221. https://doi.org/10.1242/jeb.233221
- Ahmed, S., Kim, Y., 2021. PGE2 mediates hemocyte-spreading behavior by activating aquaporin via cAMP and rearranging actin cytoskeleton via Ca2+. Dev. Comp. Immunol. 125, 104230. https://doi.org/10.1016/j.dci.2021.104230
- Ahmed, S., Stanley, D., Kim, Y., 2018. An insect prostaglandin E2 synthase acts in immunity and reproduction. Front. Physiol. e01231.
- Ahmed, S., Hasan, A., Kim, Y., 2019. Overexpression of PGE2 synthase by in vivo transient expression enhances immunocompetency along with fitness cost in a lepidopteran insect. J. Exp. Biol. 222, jeb207019. https://doi.org/10.1242/jeb.207019
- Ahmed, S., Al Baki, M.A., Lee, J., Seo, D.Y., Lee, D., Kim, Y., 2021. The first report of prostacyclin and its physiological roles in insects. Gen. Comp. Endocrinol. 301, 113659. https://doi.org/10.1016/j.ygcen.2020.113659
- Al Baki, M.A., Roy, C.M., Lee, D.H., Stanley, D., Kim, Y., 2021. The prostanoids, thromboxanes, mediate hemocytic immunity to bacterial infection in the lepidopteran Spodoptera exigua. Dev. Comp. Immunol. 120, 104069. https://doi.org/10.1016/j.dci.2021.104069
- Amiri-Besheli, B., Khambay, B., Cameron, S., Deadman, M., Butt, T.M., 2000. Inter- and intra-specific variation in destruxin production by the insect pathogenic Metarhizium, and its significance to pathogenesis. Mycol. Res. 104, 447-452. https://doi.org/10.1017/S095375629900146X
- Baines, D., Desantis, T., Downer, R.G.H., 1992. Octopamine and 5-hydroxytryptamine enhance the phagocytic and nodule formation activities of cockroach (Periplaneta americana) haemocytes. J. Insect Physiol. 38, 905-914. https://doi.org/10.1016/0022-1910(92)90102-J
- Barletta, A.B.F., Trisnadi, N., Ramirez, J.L., Barillas-Mury, C., 2019. Mosquito midgut prostaglandin release establishes systemic immune priming. iScience 19, 54-62. https://doi.org/10.1016/j.isci.2019.07.012
- Benfarhat-Touzri, D., Ben Amira, A., Ben khedher, S., Givaudan, A., Jaoua, S., Tounsi, S., 2014. Combinatorial effect of Bacillus thuringiensis kurstaki and Photorhabdus luminescens against Spodoptera littoralis (Lepidoptera: Noctuidae). J. Basic Microbiol. 54, 1160-1165. https://doi.org/10.1002/jobm.201300142
- Bergstrom, S., Ryhage, R., Samuelsson, B., Sjovall, J., 1962. The structure of prostaglandin E, F1 and F2. Acta Chem. Scandin. 16, 501-502. https://doi.org/10.3891/acta.chem.scand.16-0501
- Borkman, M., Storlien, L.H., Pan, D.A., Jenkins, A.B., Chisholm, D.J., Campbell, L.V., 1993. The relation between insulin sensitivity and the fatty-acid composition of skeletal-muscle phospholipids. N. Engl. J. Med. 328, 238-244. https://doi.org/10.1056/NEJM199301283280404
- Bouarab, K., Adas, F., Gaquerel, E., Kloareg, B., Salaun, J.P., Potin, P., 2004. The innate immunity of a marine red alga involves oxylipins from both the eicosanoid and octadecanoid pathways. Plant Physiol. 135, 1838-1848. https://doi.org/10.1104/pp.103.037622
- Braune, S., Kupper, J.H., Jung, F., 2020. Effect of prostanoids on human platelet function: an overview. Int. J. Mol. Sci. 21, 9020. https://doi.org/10.3390/ijms21239020
- Clark, K.D., Pech, L.L., Strand, M.R., 1997. Isolation and identification of a plasmatocyte-spreading peptide from the hemolymph of the lepidopteran insect Pseudoplusia includens. J. Biol. Chem. 272, 23440-23447. https://doi.org/10.1074/jbc.272.37.23440
- Clem, R.J., 2005. The role of apoptosis in defense against baculovirus infection in insects. Curr. Top. Microbiol. Immunol. 289, 113-129.
- Davidson, F.F., Dennis, E.A., 1990a. Amino acid sequence and circular dichroism of Indian cobra (Naja naja naja) venom acidic phospholipase A2. Biochim. Biophys. Acta 1037, 7-15. https://doi.org/10.1016/0167-4838(90)90095-W
- Davidson, F.F., Dennis, E.A., 1990b. Evolutionary relationships and implications for the regulation of phospholipase A2 from snake venom to human secreted forms. J. Mol. Evol. 31, 228-238. https://doi.org/10.1007/BF02109500
- Dennis, E.A., 1994. Diversity of group types, regulation, and function of phospholipase A2. J. Biol. Chem. 269, 13057-13060. https://doi.org/10.1016/S0021-9258(17)36794-7
- Dudler, T., Chen, W.Q., Wang, S., Schneider, T., Annand, R.R., Dempcy, R.O., Crameri, R., Gmachl, M., Suter, M., Gelb, M.H., 1992. High-level expression in Escherichia coli and rapid purification of enzymatically active honey bee venom phospholipase A2. Biochim. Biophys. Acta 1165, 201-210. https://doi.org/10.1016/0005-2760(92)90188-2
- Eom, S., Park, Y., Kim, H., Kim, Y., 2014. Development of a high efficient "Dual Bt-Plus" insecticide using a primary form of an entomopathogenic bacterium, Xenorhabdus nematophila. J. Microbiol. Biotechnol. 24, 507-521. https://doi.org/10.4014/jmb.1310.10116
- Ferre, J., Real, M.D., van Rie, J., Jansens, S., Peferoen, M., 1991. Resistance to the Bacillus thuringiensis bioinsecticide in a field population of Plutella xylostella is due to a change in a midgut membrane receptor. Proc. Natl. Acad. Sci. U. S. A. 88, 5119-5123. https://doi.org/10.1073/pnas.88.12.5119
- Frappier, F., Ferron, P., Pais, M., 1975. Chimie des champignons entomopathogenes - le beauvellide, nouveau cyclodepsipeptide isole d'un Beauveria tenella. Phytochemistry 14, 2703-2705. https://doi.org/10.1016/0031-9422(75)85254-X
- Gillespie, J.P., Kanost, M.R., Trenczek, T., 1997. Biological mediators of insect immunity. Annu. Rev. Entomol. 42, 611-643. https://doi.org/10.1146/annurev.ento.42.1.611
- Goettel, M.S., Eilenberg, J., Glare, T., 2005. Entomopathogenic fungi and their role in regulaion of insect populations. in: Gilbert, L.I., Iatrou, K., Gill, S.S. (Eds.), Comprehensive Mol Insect Science, vol 6, Elsevier, New York, pp 361-405.
- Groen, C.M., Jayo, A., Parsons, M., Tootle, T.L., 2015. Prostaglandins regulate nuclear localization of Fascin and its function in nucleolar architecture. Mol. Biol. Cell. 26, 1901-1917. https://doi.org/10.1091/mbc.E14-09-1384
- Hajek, A.E., St. Leger, R.J., 1994. Interactions between fungal pathogens and insect hosts. Annu. Rev. Entomol. 39, 293-322. https://doi.org/10.1146/annurev.en.39.010194.001453
- Hamill, R.L., Higgens, C.E., Boaz, H.E., Gorman, M., 1969. The structure of beauvericin, a new depsipeptide antibiotic toxic to Artemia salina. Tetrahed. Lett. 49, 4255-4258.
- Han, G.D., Na, J., Chun, Y.S., Kumar, S., Kim, W., Kim, Y., 2017. Chlorine dioxide enhances lipid peroxidation through inhibiting calcium-independent cellular PLA2 in larvae of the Indianmeal moth, Plodia interpunctella. Pestic. Biochem. Physiol. 143, 48-56. https://doi.org/10.1016/j.pestbp.2017.09.010
- Hasan, Shabbir, A., Kim, Y. 2019. Biosynthetic pathway of arachidonic acid in Spodoptera exigua in response to bacterial challenge. Insect Biochem. Mol. Biol. 111, 103179. https://doi.org/10.1016/j.ibmb.2019.103179
- Herrero, S., Ansems, M., Van Oers, M.M., Vlak, J.M., Bakker, P.L., de Maagd, R.A., 2007. REPAT, a new family of proteins induced by bacterial toxins and baculovirus infection in Spodoptera exigua. Insect Biochem. Mol. Biol. 37, 1109-1118. https://doi.org/10.1016/j.ibmb.2007.06.007
- Hrithik, T.H., Vatanparast, M., Ahmed, S., Kim, Y., 2021. Repat33 acts as a downstream component of eicosanoid signaling pathway mediating immune responses of Spodoptera exigua, a lepidopteran insect. Insects 12, 449. https://doi.org/10.3390/insects12050449
- Imler, J.L., Bulet, P., 2005. Antimicrobial peptides in Drosophila: structures, activities and gene regulation. Chem. Immunol. Allergy 86, 1-21. https://doi.org/10.1159/000086648
- Ishibashi, K., 2006. Aquaporin subfamily with unusual NPA boxes. Biochem. Biophy. Acta 1758, 989-993. https://doi.org/10.1016/j.bbamem.2006.02.024
- Jallouli, W., Boukedi, H., Sellami, S., Frikha, F., Abdelkefi-Mesrati, L., Tounsi, S., 2018. Combinatorial effect of Photorhabdus luminescens TT01 and Bacillus thuringiensis Vip3Aa16 toxin against Agrotis segetum. Toxicon. 142, 52-57. https://doi.org/10.1016/j.toxicon.2017.12.054
- Jeffs, L.B., Khachatourians, G.G., 1997. Toxic properties of Beauveria pigments on erythrocyte membranes. Toxicon. 35, 1351-1356. https://doi.org/10.1016/S0041-0101(97)00025-1
- Ji, D., Yi, Y., Kim, G.H., Choi, Y.H., Kim, P., Baek, N.I., Kim, Y., 2004. Identification of an antibacterial compound, benzylideneacetone, from Xenorhabdus nematophila against major plant-pathogenic bacteria. FEMS Microbiol. Lett. 239, 241-248. https://doi.org/10.1016/j.femsle.2004.08.041
- Jiang, H., Kanost, M.R., 2000. The clip-domain family of serine proteinases in arthropods. Insect Biochem. Mol. Biol. 30, 95-105. https://doi.org/10.1016/S0965-1748(99)00113-7
- Jung, S., Kim, Y., 2006a. Synergistic effect of entomopathogenic bacteria (Xenorhabdus sp. and Photorhabdus temperata ssp. temperata) on the pathogenicity of Bacillus thuringiensis ssp. aizawai against Spodoptera exigua (Lepidoptera: Noctuidae). Environ. Entomol. 35, 1584-1589. https://doi.org/10.1603/0046-225X(2006)35[1584:SEOEBX]2.0.CO;2
- Jung, S., Kim, Y., 2006b. Synergistic effect of Xenorhabdus nematophila K1 and Bacillus thuringiensis subsp. aizawai against Spodoptera exigua (Lepidoptera: Noctuidae). Biol. Control. 39, 201-209. https://doi.org/10.1016/j.biocontrol.2006.07.002
- Jung, S., Kwoen, M., Choi, J.M., Je, Y.H., Kim, Y., 2006. Parasitism of Cotesia spp. enhances susceptibility of Plutella xylostella to other pathogens. J. Asia Pac. Entomol. 9, 255-263. https://doi.org/10.1016/S1226-8615(08)60300-3
- Jung, J., Sajjadian, S.M, Kim, Y., 2019. Hemolin, an immunoglobulin-like peptide, opsonizes nonself targets for phagocytosis and encapsulation in Spodoptera exigua, a lepidopteran insect. J. Asia Pac. Entomol. 22, 947-956. https://doi.org/10.1016/j.aspen.2019.08.002
- Kanost, M.R., Jiang, H., Yu, X.Q., 2004. Innate immune responses of a lepidopteran insect, Manduca sexta. Immunol Rev. 198, 97-105. https://doi.org/10.1111/j.0105-2896.2004.0121.x
- Kim, Y., Stanley, D., 2021. Eicosanoid signaling in insect immunology: new genes and unresolved issues. Genes 12, 211. https://doi.org/10.3390/genes12020211
- Kim, G., Madanagopal, N., Lee, D., Kim, Y., 2009. Octopamine and 5-hydroxytryptamine mediate hemocytic phagocytosis and nodule formation via eicosanoids in the beet armyworm, Spodoptera exigua. Arch. Insect Biochem. Physiol. 70, 162-176. https://doi.org/10.1002/arch.20286
- Kim, Y., Lee, S., Seo, S., Kim, K., 2016. Fatty acid composition of different tissues of Spodoptera exigua larvae and a role of cellular phospholipase A2. Korean J. Appl. Entomol. 55, 129-138. https://doi.org/10.5656/KSAE.2016.04.0.011
- Kim, Y.. Stanley, D., Ahmed, S., An, C., 2018a. Eicosanoid-mediated immunity in insects. Dev. Comp. Immunol. 83, 130-143. https://doi.org/10.1016/j.dci.2017.12.005
- Kim, H., Choi, D., Jung, J., Kim, Y., 2018b. Eicosanoid mediation of immune responses at early bacterial infectin stage and its inhibition by Photorhabdus temperata subsp. temperata, an entomopathogenic bacterium. Arch. Insect Biochem. Physiol. 99, e21502. https://doi.org/10.1002/arch.21502
- Kim, Y., Ahmed, S., Al Baki, M.A., Kumar, S., Kim, K., Park, Y., Stanley, D., 2020. Deletion mutant of PGE2 receptor using CRISPR-Cas9 exhibits larval immunosuppression and adult infertility in a lepidopteran insect, Spodoptera exigua. Dev. Comp. Immunol. 111, 103743. https://doi.org/10.1016/j.dci.2020.103743
- Kodaira, Y., 1961. Biochemical studies on the muscardine fungi in the silkworms, Bombyx mori. J. Fac. Text. Sci. Technol. Sinshu Uni. Sericult. 5, 1-68.
- Kramer, R.M., Hession, C., Johansen, B., Hayes, G., McGray, P., Chow, E.P., Tizard, R., Pepinsky, R.B., 1989. Structure and properties of a human non-pancreatic phospholipase A2. J. Biol. Chem. 264, 5768-5775. https://doi.org/10.1016/S0021-9258(18)83616-X
- Krasnoff, S.B., Gupta, S., 1994. Identification of the antibiotic phomalactone from the entomopathogenic fungus Hirsutella thompsonii var. synnematosa. J. Chem. Ecol. 20, 293-302. https://doi.org/10.1007/BF02064437
- Krasnoff, S.B., Gupta, S., St. Leger, R.J., Renwick, J.A., Roberts, D.W., 1991. Antifungal and insecticidal properties of efrapeptins: metabolites of the fungus Tolypocladium niveum. J. Invertebr. Pathol. 58, 180-188. https://doi.org/10.1016/0022-2011(91)90062-U
- Kwon, H., Yang, Y., Kumar, S., Lee, D.W., Bajracharya, P., Calkins, T.L., Kim, Y., Pietrantonio, P.V., 2020. Characterization of the first insect prostaglandin (PGE2) receptor: MansePGE2R is expressed in oenocytoids and lipoteichoic acid (LTA) increases transcript expression. Insect Biochem. Mol. Biol. 117, 103290. https://doi.org/10.1016/j.ibmb.2019.103290
- Kwon, H., Hall, D.R., Smith, R.C., 2021. Prostaglandin E2 signaling mediates oenocytoid immune cell function and lysis, limiting bacteria and Plasmodium oocyst survival in Anopheles gambiae. Front. Immunol. 12, 680020. https://doi.org/10.3389/fimmu.2021.680020
- Lavine, M.D., Strand, M.R., 2002. Insect hemocytes and their role in immunity. Insect Biochem. Mol. Biol. 32, 1295-1309. https://doi.org/10.1016/S0965-1748(02)00092-9
- Lee, K.A., Kim, S.H., Kim, E.K., Ha, E.M., You, H., Kim, B., Kim, M.J., Kwon, Y., Ryu, J.H., Lee, W.J., 2013. Bacterial-derived uracil as a modulator of mucosal immunity and gut-microbe homeostasis in Drosophila. Cell 153, 797-811. https://doi.org/10.1016/j.cell.2013.04.009
- Lee, S.J., Yang, Y.T., Kim, S., Lee, M.R., Kim, J.C., Park, S.E., Hossain, M.S., Shin, T.Y., Nai, Y.S., Kim, J.S., 2019. Transcriptional response of bean bug (Riptortus pedestris) upon infection with entomopathogenic fungus, Beauveria bassiana JEF-007. Pest Manag. Sci. 75, 333-345. https://doi.org/10.1002/ps.5117
- Lemaitre, B., Hoffmann, J., 2007. The host defense of Drosophila melanogaster. Annu. Rev. Immunol. 25, 697-743. https://doi.org/10.1146/annurev.immunol.25.022106.141615
- Loeb, M.J., Martin, P.A., Hakim, R.S., Goto, S., Takeda, M., 2001. Regeneration of cultured midgut cells after exposure to sublethal doses of toxin from two strains of Bacillus thuringiensis. J. Insect Physiol. 47, 599-606. https://doi.org/10.1016/S0022-1910(00)00150-5
- Ma, G., Roberts, H., Sarjan, M., Featherstone, N., Lahnstein, J., Akhust, R., Schmidt, O.. 2005. Is the mature endotoxin Cry1Ac from Bacillus thuringiensis inactivated by a coagulation reaction in the gut lumen of resistant Heliocoverpa armigera larvae? Insect Biochem. Mol. Biol. 35, 729-739. https://doi.org/10.1016/j.ibmb.2005.02.011
- Mastore, M., Caramella, S., Quadroni, S., Brivio, M.F., 2021. Drosophila suzukii susceptibility to the oral administration of Bacillus thuringiensis, Xenorhabdus nematophila and its secondary metabolites. Insects 12, 635. https://doi.org/10.3390/insects12070635
- Matha, V., Weiser, J., Olejnicek, J., 1988. The effect of tolypin in Tolypocladium niveum crude extract against mosquito and blackfly larvae in the laboratory. Folia Parasitol. 35, 381-383.
- Mazet, I., Vey, A., 1995. Hirsutellin A, a toxic protein produced in vitro by Hirsutella thompsonii. Microbiol. Reading 141, 1343-1348. https://doi.org/10.1099/13500872-141-6-1343
- Merchant, D., Ertl, R.L., Rennard, S.I., Stanley, D.W., Miller, J.S., 2008. Eicosanoids mediate insect hemocyte migration. J. Insect Physiol. 54, 215-221. https://doi.org/10.1016/j.jinsphys.2007.09.004
- Miller, J.S., 2005. Eicosanoids influence in vitro elongation of plasmatocytes from the tobacco hornworm, Manduca sexta. Arch. Insect Biochem. Physiol. 59, 42-51. https://doi.org/10.1002/arch.20052
- Mollah, M.M.I., Kim, Y., 2020. Virulent secondary metabolites of entomopathogenic bacteria genera, Xenorhabdus and Photorhabdus, inhibit phospholipase A2 to suppress host insect immunity. BMC Microbiol. 20, 359. https://doi.org/10.1186/s12866-020-02042-9
- Mollah, M.M.I., Dekebo, A., Kim, Y., 2020. Immunosuppressive activities of novel PLA2 inhibitors from Xenorhabdus hominickii, an entomopathogenic bacterium. Insects 11, 505. https://doi.org/10.3390/insects11080505
- Morishima, I., Yamano, Y., Inoue, K., Matsuo, N., 1997. Eicosanoids mediate induction of immune genes in the fat body of the silkworm, Bombyx mori. FEBS Lett. 419, 83-86. https://doi.org/10.1016/S0014-5793(97)01418-X
- Omoto, C., McCoy, C.W., 1998. Toxicity of purified fungal toxin hirsutellin A to the citrus rust mite Phyllocoprura oleivora. J. Invertebr. Pathol. 72, 319-322. https://doi.org/10.1006/jipa.1998.4813
- Ovchinnikov, Y.A., Ivanov, V.T., Mikhaleva, I.I., 1971. The synthesis and some properties of beauvericin. Tetrahed. Lett. 2, 159-162. https://doi.org/10.1016/S0040-4039(01)96385-3
- Park, Y., Kim, Y., 2000. Eicosanoids rescue Spodoptera exigua infected with Xenorhabdus nematophila, the symbiotic bacteria to the entomopathogenic nematode Steinernema carpocapsae. J. Insect Physiol. 46, 1469-1476. https://doi.org/10.1016/S0022-1910(00)00071-8
- Park, J., Kim, Y., 2011. Benzylideneacetone suppresses both cellular and humoral immune responses of Spodoptera exigua and enhances fungal pathogenicity. J. Asia Pac. Entomol. 14, 423-427. https://doi.org/10.1016/j.aspen.2011.06.001
- Park, J., Kim, Y., 2012. Change in hemocyte populations of the beet armyworm, Spodoptera exigua, in response to bacterial infection and eicosanoid mediation. Korean J. Appl. Entomol. 51, 349-356. https://doi.org/10.5656/KSAE.2012.09.0.038
- Park, J., Stanley, D., Kim, Y. 2013. Rac1 mediates cytokine-stimulated hemocyte spreading via prostaglandin biosynthesis in the beet armyworm, Spodoptera exigua. J. Insect Physiol. 59, 682-689. https://doi.org/10.1016/j.jinsphys.2013.04.012
- Park, Y., Kumar, S., Kanumuri, R., Stanley, D., Kim, Y., 2015. A novel calcium-independent cellular PLA2 acts in insect immunity and larval growth. Insect Biochem. Mol. Biol. 66, 13-23. https://doi.org/10.1016/j.ibmb.2015.09.012
- Park, Y., Kang, S., Mohamad, M.D., Kim, H., Jung, J., Kim, Y., 2017. Identification and bacterial characteristics of Xenorhabdus hominickii ANU101 from an entomopathogenic nematode, Steinernema monticolum. J Invertebr Pathol 144, 74-87. https://doi.org/10.1016/j.jip.2017.02.002
- Phelps, P.K., Miller, J.S., Stanley, D.W., 2003. Prostaglandins, not lipoxygenase products, mediate insect microaggregation reactions to bacterial challenge in isolated hemocyte preparations. Comp. Biochem. Physiol. 136A, 409-416. https://doi.org/10.1016/S1095-6433(03)00199-5
- Quiot, J.M., Vey, A., Vago, C., Pais, M., 1980. Action antivirale d'une mycotoxine. Etude d'une toxine de l'hyphomycete Metarhizium anisopliae (Metsch.) Sorok. en culture cellulaire. CR. Acad. Sci. Ser. D (Paris) 291, 763-766.
- Rahman, M.M., Roberts, H.L.S., Sarjan, M., Asgari, S., Schmidt, O., 2004. Induction and transmission of Bacillus thuringiensis tolerance in the flour moth, Ephestia kuehniella. Proc. Natl. Acad. Sci. U. S. A. 101, 2696-2699. https://doi.org/10.1073/pnas.0306669101
- Rivero, A., 2006. Nitric oxide: an antiparasitic molecule of invertebrates. Trends Parasitol. 22, 219-225. https://doi.org/10.1016/j.pt.2006.02.014
- Roberts, D.W., Hajek, A.E., 1992. Entomopathogenic fungi as bioinsecticides. in: Leatham, G.F. (Ed.), Frontiers in Industrial Mycology. Chapman and Hall, New York, pp 144-159.
- Roy, M.C., Nam, K., Kim, J., Stanley, D., Kim, Y., 2021. Thromboxane mobilizes insect blood cells to infection foci. Front. Immunol. 12, 791319 https://doi.org/10.3389/fimmu.2021.791319
- Ryu, Y., Oh, Y., Yoon, J., Cho, W., Baek, K., 2003. Molecular characterization of a gene encoding the Drosophila melanogaster phospholipase A2. Biochim. Biophys. Acta 1628, 206-210. https://doi.org/10.1016/S0167-4781(03)00143-X
- Sadekuzzaman, M., Gautam, N., Kim, Y., 2017a. A novel calcium-independent phospholipase A2 and its physiological roles in development and immunity of a lepidopteran insect, Spodoptera exigua. Dev. Comp. Immunol. 77, 210-220. https://doi.org/10.1016/j.dci.2017.08.014
- Sadekuzzaman, M.D., Park, Y., Jung, J., Lee, S., Kim, K., Kim, Y., 2017b. An entomopathogenic bacterium, Xenorhabdus hominickii ANU101, produces oxindole and suppresses host insect immune response by inhibiting eicosanoid biosynthesis. J. Invertebr. Pathol. 145, 13-22. https://doi.org/10.1016/j.jip.2017.03.004
- Sadekuzzaman, M.D., Stanley, D., Kim, Y., 2018. Nitric Oxide mediates insect cellular immunity via phospholipase A2 activation. J. Innate Immun. 10, 1-12. https://doi.org/10.1159/000485754
- Sajjadian, S.M., Kim, Y., 2020. PGE2 upregulates gene expression of dual oxidase in a lepidopteran insect midgut via cAMP signalling pathway. Open Biol. 10, 200197. https://doi.org/10.1098/rsob.200197
- Sajjadian, S.M., Vatanparast, M., Stanley, D., Kim, Y., 2019a. Secretion of secretory phospholipase A2 into Spodoptera exigua larval midgut lumen and its role in lipid digestion. Insect Mol. Biol. 28, 773-784. https://doi.org/10.1111/imb.12588
- Sajjadian, S.M., Vatanparast, M., Kim, Y., 2019b. Toll/IMD signal pathways mediate cellular immune responses via induction of intracellular PLA2 expression. Arch. Insect Biochem. Physiol. 101, e21559. https://doi.org/10.1002/arch.21559
- Sajjadian, S.M., Ahmed, S., Al Baki, M.A., Kim, Y., 2020. Prostaglandin D2 synthase and its functional association with immune and reproductive processes in a lepidopteran insect, Spodoptera exigua. Gen. Comp. Endocrinol. 287, 113352. https://doi.org/10.1016/j.ygcen.2019.113352
- Scarpati, M., Qi, Y., Govid, S., Singh, S., 2019. A combined computational strategy of sequence and structural analysis predicts the existence of a functional eicosanoid pathway in Drosophila melanogaster. PLoS ONE 14, e0211897. https://doi.org/10.1371/journal.pone.0211897
- Seilhamer, J.J., Pruzanski, W., Vadas, P., Plant, S., Miller, J.A., Kloss, J., Johnson, L.K., 1989. Cloning and recombinant expression of phospholipase A2 present in rheumatoid arthritic synovial fluid. J. Biol. Chem. 264, 5335-5338. https://doi.org/10.1016/S0021-9258(18)83549-9
- Seo, S., Kim, Y., 2011. Development of "Bt-Plus" biopesticide using entomopathogenic bacteria (Xenorhabdus nematophila and Photorhabdus temperata ssp. temperata) metabolites. Korean J. Appl. Entomol. 50, 171-178. https://doi.org/10.5656/KSAE.2011.07.0.24
- Seo, S., Jang, H., Kim, K., Kim, Y., 2010. Comparative analysis of immunsuppressive metabolites synthesized by an entomopathogenic bacterium, Photorhabdus temperata ssp. temperata, to select economic bacterial culture media. Korean J. Appl. Entomol. 49, 409-416. https://doi.org/10.5656/KSAE.2010.49.4.409
- Seo, S., Jeon, M.Y., Chun, W.S., Lee, S.H,, Seo, J.A., Yi, Y.G., Hong, Y.P., Kim, Y., 2011. Structure-activity analysis of benzylideneacetone for effective control of plant pests. Korean J. Appl. Entomol. 50, 107-113. https://doi.org/10.5656/KSAE.2011.04.0.15
- Seo, S., Lee, S., Hong, Y., Kim, Y., 2012. Phospholipase A2 inhibitors synthesized by two entomopathogenic bacteria, Xenorhabdus nematophila and Photorhabdus temperata subsp temperata. Appl. Environ. Microbiol. 78, 3816-3823. https://doi.org/10.1128/AEM.00301-12
- Shafeeq, T., Ahmed, S., Kim, Y., 2018. Toll immune signal activates cellular immune response via eicosanoid. Dev. Comp. Immunol. 84, 408-419. https://doi.org/10.1016/j.dci.2018.03.015
- Shao, Z., Cui, Y., Liu, X., Yi, H., Ji, J., Yu, Z., 1998. Processing of delta-endotoxin of Bacillus thuringiensis subsp. kurstaki HD-1 in Heliothis armigera midgut juice and the effects of protease inhibitors. J. Invertebr. Pathol. 72, 73-81. https://doi.org/10.1006/jipa.1998.4757
- Shin, T.Y., Lee, M.R., Park, S.E., Lee, S.J., Kim, W.J., Kim, J.S., 2020. Pathogenesis-related genes of entomopathogenic fungi. Arch. Insect Biochem. Physiol. 105, e21747. https://doi.org/10.1002/arch.21747
- Shrestha, S., Kim, Y., 2008. Eicosanoids mediate prophenoloxidase release from oenocytoids in the beet armyworm Spodoptera exigua. Insect Biochem. Mol. Biol. 38, 99-112. https://doi.org/10.1016/j.ibmb.2007.09.013
- Shrestha, S., Kim, Y., 2010. Activation of immune-associated phospholipase A2 is functionally linked to Toll/Imd signal pathways in the red flour beetle, Tribolium castaneum. Dev. Comp. Immunol. 34, 530-537. https://doi.org/10.1016/j.dci.2009.12.013
- Shrestha, S., Park, Y., Stanley, D., Kim, Y., 2010. Genes encoding phospholipase A2 mediate insect nodulation reactions to bacterial challenge. J. Insect Physiol. 56, 324-332. https://doi.org/10.1016/j.jinsphys.2009.11.008
- Shrestha, S., Stanley, D., Kim, Y., 2011. PGE2 induces oenocytoid cell lysis via a G protein-coupled receptor in the beet armyworm, Spodoptera exigua. J. Insect Physiol. 57, 1537-1544. https://doi.org/10.1016/j.jinsphys.2011.08.006
- Shrestha, S., Park, J., Ahn, S., Kim, Y., 2015. PGE2 mediates oenocytoid cell lysis via a sodium-potassium-chloride cotransporter. Arch. Insect Biochem. Physiol. 89, 218-229. https://doi.org/10.1002/arch.21238
- Srikanth, K., Park, J., Kim, Y., Stanley, D., 2011. Plasmatocyte-spreading peptide influences hemocyte behavior via eicosanoids. Arch. Insect Biochem. Physiol. 78, 145-160. https://doi.org/10.1002/arch.20450
- Stanley, D., 2000. Eicosanoids in invertebrate signal transduction systems. Princeton University Press, Princeton, New Jersey.
- Stanley, D., Kim, Y., 2020. Why most insects have very low proportions of C20 polyunsaturated fatty acids: the oxidative stress hypothesis. Arch. Insect Biochem. Physiol. 103, e21622. https://doi.org/10.1002/arch.21622
- Strand, M.R., 2008. The insect cellular immune response. Insect Sci. 15, 1-14. https://doi.org/10.1111/j.1744-7917.2008.00183.x
- Suzuki, A., Kanaoka, M., Isogai, A., Murakpshi, S., Ichinoe, M., Tamura, S., 1977. Bassianolide, a new insecticidal cyclodepsipeptide from Beauveria bassiana and Verticillium lecanii. Tetrahed. Lett. 25, 2167-2170. https://doi.org/10.1016/S0040-4039(01)81189-8
- Tabashnik, B.E., Brevault, T., Carriere, Y., 2013. Insect resistance to Bt crops: lessons from the first billion acres. Nat. Biotech. 31, 510-521. https://doi.org/10.1038/nbt.2597
- Terry, B.J., Liu, W.C., Cianci, C.W., Proszynski, E., Fernandes, P., Bush, K., Meyers, E., 1992. Inhibition of herpes simplex virus type 1 DNA polymerase by the natural product oosporein. J. Antibiotics 45, 286-288. https://doi.org/10.7164/antibiotics.45.286
- Tyurina, Y.Y., Tyurin, V.A., Epperly, M.W., Greenberger, J.S., Kagan, V.E., 2008. Oxidative lipidomics of gamma-irradiation-induced intestinal injury. Free Radic. Biol. Med. 44, 299-314. https://doi.org/10.1016/j.freeradbiomed.2007.08.021
- Tootle, T.L., Spradling, A.C., 2008. Drosophila Pxt: a cyclooxygenase-like facilitator of follicle maturation. Development 135, 839-847. https://doi.org/10.1242/dev.017590
- van Rie, J., McGaughey, W.H., Johnson, D.E., Barnett, B.D., van Mellaert, H., 1990. Mechanism of insect resistance to the microbial insecticide Bacillus thuringiensis. Science 247, 72-74. https://doi.org/10.1126/science.2294593
- Vasquez, A.M., Mouchlis, V.D., Dennis, E.A., 2018. Review of four major distinct types of human phospholipase A2. Adv. Biol. Regul. 67, 212-218. https://doi.org/10.1016/j.jbior.2017.10.009
- Vatanparast, M., Ahmed, S., Herrero, S., Kim, Y., 2018. A non-venomous sPLA2 of a lepidopteran insect: its physiological functions in development and immunity. Dev. Comp. Immunol. 89, 83-92. https://doi.org/10.1016/j.dci.2018.08.008
- Vatanparast, M., Ahmed, S., Sajjadian, S.M., Kim, Y., 2019. A prophylactic role of a secretory PLA2 of Spodoptera exigua against entomopathogens. Dev. Comp. Immunol. 95, 108-117. https://doi.org/10.1016/j.dci.2019.02.008
- Vey, A., Hoagland, R.E., Butt, T.M., 2001. Toxic metabolites of fungal biocontrol agents. in: Butt, T.M., Jackson, C., Magan, N. (Eds.), Fungal Biocontrol Agents, CABI Publishing, Wallingford, pp. 311-346.
- von Euler, U.S., 1936. On the specific vasodilating and plain muscle stimulating substances from accessory genital glands in men and certain animals (prostaglandin and vesiglandin). J. Physiol. 88, 213-234. https://doi.org/10.1113/jphysiol.1936.sp003433
- Wolf, M.J., Gross, R.W., 1996. The calcium-dependent association and functional coupling of calmodulin with myocardial phospholipase A2. Implications for cardiac cycle-dependent alterations in phospholipolysis. J. Biol. Chem. 271, 20989-20992. https://doi.org/10.1074/jbc.271.35.20989
- Yajima, M., Takada, M., Takahashi, N., Kikuchi, H., Natori, S., Oshima, Y., Kurata, S., 2003. A newly established in vitro culture using transgenic Drosophila reveals functional coupling between the phospholipase A2-generated fatty acid cascade and lipopolysaccharide-dependent activation of the immune deficiency (imd) pathway in insect immunity. Biochem J. 371, 205-210. https://doi.org/10.1042/BJ20021603
- Yamamoto, K., Hirowatari, A., 2021. Investigation of the substrate-binding site of a prostaglandin E synthase in Bombyx mori. Protein J. 40, 63-67. https://doi.org/10.1007/s10930-020-09956-3
- You, H.J., Woo, C.H., Choi, E.Y., Cho, S.H., Yoo, Y.J., Kim, J.H., 2005. Roles of Rac and p38 kinase in the activation of cytosolic phospholipase A2 in response to PMA. Biochem. J. 388, 527-535. https://doi.org/10.1042/BJ20041614
- Zhao, P., Li, J., Wang, Y., Jiang, H., 2007. Broad-spectrum antimicrobial activity of the reactive compounds generated in vitro by Manduca sexta phenoloxidase. Insect Biochem. Mol. Biol. 37, 952-959. https://doi.org/10.1016/j.ibmb.2007.05.001