DOI QR코드

DOI QR Code

Properties of β-carotene-loaded chitosan/hyaluronic acid nanocapsules: solubility and redispersibility

베타카로틴 함유 키토산/하이알루론산 나노캡슐의 용해도 및 재분산성 특성

  • An, Eun Jung (Department of Food and Nutrition, Hanyang University) ;
  • Lee, Ji-Soo (Department of Food and Nutrition, Hanyang University) ;
  • Lee, Hyeon Gyu (Department of Food and Nutrition, Hanyang University)
  • 안은정 (한양대학교 식품영양학과) ;
  • 이지수 (한양대학교 식품영양학과) ;
  • 이현규 (한양대학교 식품영양학과)
  • Received : 2021.11.04
  • Accepted : 2021.12.31
  • Published : 2022.02.28

Abstract

To improve the solubility of β-carotene, three types of β-carotene-loaded nanocapsules were prepared using chitosan (CS) and two cross-linkers, sodium tripolyphosphate (TPP) and hyaluronic acid (HA), alone or in combination (CS-TPP, CS-TPP-HA, and CS-HA). The entrapment efficiency of all nanocapsules significantly increased with an increase in TPP and HA, with the efficiency ranging from 95% to 99%. The solubility of β-carotene was significantly improved by CS nanoencapsulation before and after lyophilization and during storage. CS/HA nanoencapsulation significantly improved (by 11-fold) the water solubility of β-carotene. In particular, CS/HA nanoencapsulation was the most effective in terms of not only the solubility of β-carotene, but also the redispersibility ratio. Therefore, CS/HA encapsulation could be useful for improving the solubility of poorly soluble active ingredients, such as β-carotene.

β-Carotene의 용해도를 증진시키기 키토산을 기본 피복물질로 사용하면서 TPP와 HA를 단독 또는 복합적으로 사용하여 세 종류(CS/TPP, CS/TPP/HA와 CS/HA)의 나노캡슐을 제조하였다. 모든 종류의 나노캡슐에서 95%가 넘는 높은 포집효율이 관측되었다. β-Carotene 에멀젼의 저장안정성이 취약한 pH 2-3 조건에서 8일동안 저장하였을 때 CS/TPP/HA와 CS/HA 나노캡슐의 물리적 특성뿐만 아니라 β-carotene의 용해도 또한 안정적으로 유지되는 경향을 나타냈다. β-Carotene의 용해도를 나노캡슐의 건조 전과 후 관측한 결과, 대조군에 비해서 나노캡슐화에 의해서 유의적으로 향상된 것을 확인할 수 있었다. 특히 CS/HA 나노캡슐은 용해도와 재분산성의 측면에서 모두 우수한 특성을 나타냈다. 본 연구를 통해서 CS/HA 나노캡슐은 β-carotene과 같은 난용성 활성성분의 용해도를 증진시킬 수 있는 식품산업에 활용가능한 전달체로서 이용 가능성이 높을 것으로 판단된다.

Keywords

Acknowledgement

이 논문은 2021년도 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(2021R1A2C2013460).

References

  1. Agnihotri SA, Mallikarjuna NN, Aminabhavi TM. Recent advances on chitosan-based micro-and nanoparticles in drug delivery. J. Control Release 100: 5-28 (2004) https://doi.org/10.1016/j.jconrel.2004.08.010
  2. Akentieva N, Gizatullin A, Silvestre O, Savchuk O, Shkondina N, Prichodchenko T, Mitschenko D, Zhilenkov A, Troshin P, Sanina N, "IOP Conference Series: Materials Science and Engineering," ed. eds. IOP Publishing, pp. 012002 (2020).
  3. Almalik A, Alradwan I, Majrashi MA, Alsaffar BA, Algarni AT, Alsuabeyl MS, Alrabiah H, Tirelli N, Alhasan AH. Cellular responses of hyaluronic acid-coated chitosan nanoparticles. Toxicol. Res. 7: 942-950 (2018) https://doi.org/10.1039/C8TX00041G
  4. Bushrab N, Muller R. Nanocrystals of poorly soluble drugs for oral administration. J. New Drugs 5: 20-22 (2003)
  5. Calvo P, Remunan-Lopez C, Vila-Jato JL, Alonso MJ. Novel hydrophilic chitosan-polyethylene oxide nanoparticles as protein carriers. J. Appl. Polym. Sci. 63: 125-132 (1997) https://doi.org/10.1002/(SICI)1097-4628(19970103)63:1<125::AID-APP13>3.0.CO;2-4
  6. Canfield LM, Fritz TA, Tarara TE. Incorporation of β-carotene into mixed micelles. Method. Enzymol. 189: 418-422 (1990) https://doi.org/10.1016/0076-6879(90)89316-A
  7. Chen J, Li F, Li Z, McClements DJ, Xiao H. Encapsulation of carotenoids in emulsion-based delivery systems: Enhancement of β-carotene water-dispersibility and chemical stability. Food Hydrocoll. 69: 49-55 (2017) https://doi.org/10.1016/j.foodhyd.2017.01.024
  8. Chiesa E, Dorati R, Conti B, Modena T, Cova E, Meloni F, Genta I. Hyaluronic acid-decorated chitosan nanoparticles for CD44-targeted delivery of everolimus. Int. J. Mol. Sci. 19: 2310 (2018) https://doi.org/10.3390/ijms19082310
  9. Chung JH, Lee J-S, Lee HG. Resveratrol-loaded chitosan-γ-poly (glutamic acid) nanoparticles: Optimization, solubility, UV stability, and cellular antioxidant activity. Colloid Surf. B. 186: 110702 (2020) https://doi.org/10.1016/j.colsurfb.2019.110702
  10. Desobry SA, Netto FM, Labuza TP. Preservation of β-carotene from carrots. Crit. Rev. Food Sci. 38: 381-396 (1998) https://doi.org/10.1080/10408699891274255
  11. Du J, Zhang S, Sun R, Zhang LF, Xiong CD, Peng YX. Novel polyelectrolyte carboxymethyl konjac glucomannan-chitosan nanoparticles for drug delivery. II. Release of albumin in vitro. J. Biomed. Mater. Res. B 72: 299-304 (2005)
  12. Dubal DB, Rau SW, Shughrue PJ, Zhu H, Yu J, Cashion AB, Suzuki S, Gerhold LM, Bottner MB, Dubal SB. Differential modulation of estrogen receptors (ERs) in ischemic brain injury: a role for ERα in estradiol-mediated protection against delayed cell death. Endocrinology 147: 3076 (2006) https://doi.org/10.1210/en.2005-1177
  13. Dyer A, Hinchcliffe M, Watts P, Castile J, Jabbal-Gill I, Nankervis R, Smith A, Illum L. Nasal delivery of insulin using novel chitosan based formulations: a comparative study in two animal models between simple chitosan formulations and chitosan nanoparticles. Pharm. Res. 19: 998-1008 (2002) https://doi.org/10.1023/A:1016418523014
  14. Dziezak JD. Microencapsulation and encapsulated ingredients. Food Technol. 42: 136-153 (1988)
  15. Fang JY, Chen JP, Leu YL, Hu JW. Temperature-sensitive hydrogels composed of chitosan and hyaluronic acid as injectable carriers for drug delivery. Eur. J. Pharm. Biopharm. 68: 626-636 (2008) https://doi.org/10.1016/j.ejpb.2007.08.012
  16. Gan Q, Wang T, Cochrane C, McCarron P. Modulation of surface charge, particle size and morphological properties of chitosan-TPP nanoparticles intended for gene delivery. Colloid Surf. B. 44: 65-73 (2005) https://doi.org/10.1016/j.colsurfb.2005.06.001
  17. Giorgio S. The stability of β-carotene under different laboratory conditions. J. Nutr. Biochem. 3: 124-128 (1992) https://doi.org/10.1016/0955-2863(92)90104-Q
  18. Goa KL, Benfield P. Hyaluronic acid. A review of its pharmacology and use as a surgical aid in ophthalmology, and its therapeutic potential in joint disease and wound healing. Drugs 47: 536 (1994) https://doi.org/10.2165/00003495-199447030-00009
  19. Gryparis E, Mattheolabakis G, Bikiaris D, Avgoustakis K. Effect of conditions of preparation on the size and encapsulation properties of PLGA-mPEG nanoparticles of cisplatin. Drug Deliv. 14: 371-380 (2007) https://doi.org/10.1080/10717540701202937
  20. Hecq J, Deleers M, Fanara D, Vranckx H, Amighi K. Preparation and characterization of nanocrystals for solubility and dissolution rate enhancement of nifedipine. Int. J. Pharm. 299: 167-177 (2005) https://doi.org/10.1016/j.ijpharm.2005.05.014
  21. Jang KI, Lee HG. Stability of chitosan nanoparticles for l-ascorbic acid during heat treatment in aqueous solution. J. Agr. Food Chem. 56: 1936-1941 (2008) https://doi.org/10.1021/jf073385e
  22. Karathanos VT, Mourtzinos I, Yannakopoulou K, Andrikopoulos NK. Study of the solubility, antioxidant activity and structure of inclusion complex of vanillin with β-cyclodextrin. Food Chem. 101: 652-658 (2007) https://doi.org/10.1016/j.foodchem.2006.01.053
  23. Kim A, Checkla DM, Dehazya P, Chen W. Characterization of DNA-hyaluronan matrix for sustained gene transfer. J. Control Release 90: 81-95 (2003) https://doi.org/10.1016/S0168-3659(03)00175-5
  24. Kittikaiwan P, Powthongsook S, Pavasant P, Shotipruk A. Encapsulation of Haematococcus pluvialis using chitosan for astaxanthin stability enhancement. Carbohyd. Polym. 70: 378-385 (2007) https://doi.org/10.1016/j.carbpol.2007.04.021
  25. Kumar A, Sahoo SK, Padhee K, Kochar PPS, Satapathy A, Pathak N. Review on solubility enhancement techniques for hydrophobic drugs. Int. J. Compr. Pharm. 3 (2011)
  26. Liu D, Gao Y, Kispert LD. Electrochemical properties of natural carotenoids. J. Electroanal. Chem. 488: 140-150 (2000) https://doi.org/10.1016/S0022-0728(00)00205-9
  27. Lopez-Leon T, Carvalho E, Seijo B, Ortega-Vinuesa J, Bastos-Gonzalez D. Physicochemical characterization of chitosan nanoparticles: electrokinetic and stability behavior. J. Colloid Interf. Sci. 283: 344-351 (2005) https://doi.org/10.1016/j.jcis.2004.08.186
  28. Luo Y, Kirker KR, Prestwich GD. Cross-linked hyaluronic acid hydrogel films: new biomaterials for drug delivery. J. Control Release 69: 169-184 (2000) https://doi.org/10.1016/S0168-3659(00)00300-X
  29. Mangels AR, Holden JM, Beecher GR, Forman MR, Lanza E. Carotenoid content of fruits and vegetables: An evaluation of analytic data. J. Am. Diet. Assoc. 93: 284-296 (1993) https://doi.org/10.1016/0002-8223(93)91553-3
  30. Mauludin R, Muller RH, Keck CM. Kinetic solubility and dissolution velocity of rutin nanocrystals. Eur. J. Pharm. Sci. 36: 502-510 (2009) https://doi.org/10.1016/j.ejps.2008.12.002
  31. McClements D, Decker E, Weiss J. Emulsion-based delivery systems for lipophilic bioactive components. J. Food Sci. 72: R109-R124 (2007) https://doi.org/10.1111/j.1750-3841.2007.00507.x
  32. Milne DB, Botnen J. Retinol, alpha-tocopherol, lycopene, and alpha-and beta-carotene simultaneously determined in plasma by isocratic liquid chromatography. Clin. Chem. 32: 874 (1986) https://doi.org/10.1093/clinchem/32.5.874
  33. Oh EJ, Kim J-W, Kong J-H, Ryu SH, Hahn SK. Signal transduction of hyaluronic acid-peptide conjugate for formyl peptide receptor like 1 receptor. Bioconjugate Chem. 19: 2401-2408 (2008) https://doi.org/10.1021/bc800255y
  34. Omenn GS, Goodman GE, Thornquist MD, Balmes J, Cullen MR, Glass A, Keogh JP, Meyskens Jr FL, Valanis B, Williams Jr JH. Effects of a combination of beta carotene and vitamin A on lung cancer and cardiovascular disease. New Engl. J. Med. 334: 1150-1155 (1996) https://doi.org/10.1056/NEJM199605023341802
  35. Orset S, Leach GC, Morais R, Young AJ. Spray-drying of the micro alga Dunaliella salina: Effects on β-carotene content and isomer composition. J. Agr. Food Chem. 47: 4782-4790 (1999) https://doi.org/10.1021/jf990571e
  36. Pereira FM, Melo MN, Santos AKM, Oliveira KV, Diz FM, Ligabue RA, Morrone FB, Severino P, Fricks AT. Hyaluronic acid-coated chitosan nanoparticles as carrier for the enzyme/prodrug complex based on horseradish peroxidase/indole-3-acetic acid: Characterization and potential therapeutic for bladder cancer cells. Enzyme Microb. Tech. 150: 109889 (2021) https://doi.org/10.1016/j.enzmictec.2021.109889
  37. Pinto Reis C, Neufeld RJ, Ribeiro AJ, Veiga F. Nanoencapsulation II. Biomedical applications and current status of peptide and protein nanoparticulate delivery systems. Nanomed. Nanotechnol. 2: 53-65 (2006) https://doi.org/10.1016/j.nano.2006.04.009
  38. Qian C, Decker EA, Xiao H, McClements DJ. Physical and chemical stability of β-carotene-enriched nanoemulsions: Influence of pH, ionic strength, temperature, and emulsifier type. Food Chem. 132: 1221-1229 (2012) https://doi.org/10.1016/j.foodchem.2011.11.091
  39. Shao P, Qiu Q, Xiao J, Zhu Y, Sun P. Chemical stability and in vitro release properties of β-carotene in emulsions stabilized by Ulva fasciata polysaccharide. Int. J. Biol. Macromol. 102: 225-231 (2017) https://doi.org/10.1016/j.ijbiomac.2017.03.186
  40. Silva HD, Cerqueira MA, Souza BWS, Ribeiro C, Avides MC, Quintas MAC, Coimbra JSR, Carneiro-Da-Cunha MG, Vicente AA. Nanoemulsions of β-carotene using a high-energy emulsification-evaporation technique. J. Food Eng. 102: 130-135 (2011) https://doi.org/10.1016/j.jfoodeng.2010.08.005
  41. Tang D-W, Yu S-H, Wu W-S, Hsieh H-Y, Tsai Y-C, Mi F-L. Hydrogel microspheres for stabilization of an antioxidant enzyme: effect of emulsion cross-linking of a dual polysaccharide system on the protection of enzyme activity. Colloid Surf. B. 113: 59-68 (2014) https://doi.org/10.1016/j.colsurfb.2013.09.002
  42. Trela BC, Waterhouse AL. Resveratrol: Isomeric molar absorptivities and stability. J. Agr. Food Chem. 44: 1253-1257 (1996) https://doi.org/10.1021/jf9504576
  43. Tsai ML, Chen RH, Bai SW, Chen WY. The storage stability of chitosan/tripolyphosphate nanoparticles in a phosphate buffer. Carbohyd. Polym. 84: 756-761 (2011) https://doi.org/10.1016/j.carbpol.2010.04.040
  44. Xu D, Wang X, Jiang J, Yuan F, Decker EA, Gao Y. Influence of pH, EDTA, α-tocopherol, and WPI oxidation on the degradation of β-carotene in WPI-stabilized oil-in-water emulsions. LWT-Food Sci. Technol. 54: 236-241 (2013) https://doi.org/10.1016/j.lwt.2013.05.029
  45. Yazdani M, Tavakoli O, Khoobi M, Wu YS, Faramarzi MA, Gholibegloo E, Farkhondeh S. Beta-carotene/cyclodextrin-based inclusion complex: improved loading, solubility, stability, and cytotoxicity. J. Incl. Phenom. Macrocycl. Chem. 102: 1-10 (2021)
  46. Zheng Y, Yang W, Wang C, Hu J, Fu S, Dong L, Wu L, Shen X. Nanoparticles based on the complex of chitosan and polyaspartic acid sodium salt: preparation, characterization and the use for 5-fluorouracil delivery. Eur. J. Pharm. Biopharm. 67: 621-631 (2007) https://doi.org/10.1016/j.ejpb.2007.04.007