DOI QR코드

DOI QR Code

DEFERRED INVARIANT STATISTICAL CONVERGENCE OF ORDER 𝜂 FOR SET SEQUENCES

  • Gulle, Esra (Department of Mathematics, Afyon Kocatepe University)
  • Received : 2021.10.07
  • Accepted : 2021.10.25
  • Published : 2022.03.25

Abstract

In this paper, we introduce the concepts of Wijsman invariant statistical, Wijsman deferred invariant statistical and Wijsman strongly deferred invariant convergence of order 𝜂 (0 < 𝜂 ≤ 1) for set sequences. Also, we investigate some properties of these concepts and some relationships between them.

Keywords

References

  1. R.P. Agnew, On deferred Cesaro mean, Comm. Ann. Math. 33 (1932), 413-421. https://doi.org/10.2307/1968524
  2. M. Altinok, B. Inan, and M. Kucukaslan, On deferred statistical convergence of sequences of sets in metric space, Turk. J. Math. Comput. Sci. 3 (2015), no. 1, 1-9.
  3. G. Beer, Wijsman convergence: A survey, Set-Valued Anal. 2 (1994), 77-94. https://doi.org/10.1007/BF01027094
  4. R. Colak, Statistical convergence of order α, In: Modern Methods in Analysis and Its Applications (pp. 121-129), Anamaya Publishers, New Delhi, 2010.
  5. E. Dundar, N. Pancaroglu Akin, and U. Ulusu, Wijsman lacunary $\mathcal{I}$-invariant convergence of sequences of sets, Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci. (2020), 1-6, https://doi.org/10.1007/s40010-020-00694-w.
  6. M. Et and M.C,. Yilmazer, On deferred statistical convergence of sequences of sets, AIMS Mathematics 5 (2020), no. 3, 2143-2152. https://doi.org/10.3934/math.2020142
  7. M. Et, M. Cinar, and H. Sengul Kandemir, Deferred statistical convergence of order α in metric spaces, AIMS Mathematics 5 (2020), no. 4, 3731-3740. https://doi.org/10.3934/math.2020241
  8. H. Fast, Sur la convergence statistique, Colloq. Math. 2 (1951), 241-244. https://doi.org/10.4064/cm-2-3-4-241-244
  9. A.D. Gadjiev and C. Orhan, Some approximation theorems via statistical convergence, Rocky Mountain J. Math. 32 (2001), no. 1, 129-138. https://doi.org/10.1216/rmjm/1030539612
  10. E. Gulle and U. Ulusu, Wijsman quasi-invariant convergence, Creat. Math. Inform. 28 (2019), no. 2, 113-120. https://doi.org/10.37193/CMI.2019.02.03
  11. E. Gulle and U. Ulusu, Quasi-lacunary invariant statistical convergence of sequences of sets, Konuralp Journal of Mathematics 8 (2020), no. 2, 322-328.
  12. M. Gurdal and U. Yamanci, Statistical convergence and some questions of operator theory, Dynamic Systems and Applications 24 (2015), 305-312.
  13. M. Ku,cukaslan and M. Yilmazturk, On deferred statistical convergence of sequences, Kyungpook Math. J. 56 (2016), 357-366. https://doi.org/10.5666/KMJ.2016.56.2.357
  14. M. Mursaleen and O.H.H. Edely, On the invariant mean and statistical convergence, Appl. Math. Lett. 22 (2009), no. 11, 1700-1704. https://doi.org/10.1016/j.aml.2009.06.005
  15. F. Nuray, Strongly deferred invariant convergence and deferred invariant statistical convergence, Journal of Computer Science and Computational Mathematics 10 (2020), no. 1, 1-6. https://doi.org/10.20967/jcscm.2020.01.001
  16. F. Nuray and B.E. Rhoades, Statistical convergence of sequences of sets, Fasc. Math. 49 (2012), 87-99.
  17. F. Nuray, U. Ulusu, and E. Dundar, Lacunary statistical convergence of double sequences of sets, Soft Comput. 20 (2016), no. 7, 2883-2888. https://doi.org/10.1007/s00500-015-1691-8
  18. F. Nuray and U. Ulusu, Lacunary invariant statistical convergence of double sequences of sets, Creat. Math. Inform. 28 (2019), no. 2, 143-150. https://doi.org/10.37193/CMI.2019.02.06
  19. P. Pancaroglu and F. Nuray, On invariant statistically convergence and lacunary invariant statistical convergence of sequences of sets, Progress in Applied Mathematics 5 (2013), no. 2, 23-29.
  20. R.A. Raimi, Invariant means and invariant matrix methods of summability, Duke Math. J. 30 (1963), 81-94. https://doi.org/10.1215/S0012-7094-63-03009-6
  21. E. Sava,s and F. Nuray, On σ-statistically convergence and lacunary σ-statistically convergence, Mathematica Slovaca 43 (1993), no. 3, 309-315.
  22. E. Sava,s, U. Yamanci, and M. Gurdal, $\mathcal{I}$-lacunary statistical convergence of weighted g via modulus functions in 2-normed spaces, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 68 (2019), no. 2, 2324-2332.
  23. P. Schaefer, Infinite matrices and invariant means, Proc. Amer. Math. Soc. 36 (1972), 104-110. https://doi.org/10.1090/S0002-9939-1972-0306763-0
  24. U. Ulusu and F. Nuray, Lacunary statistical convergence of sequences of sets, Progress in Applied Mathematics 4 (2012), no. 2, 99-109.
  25. U. Ulusu and F. Nuray, Lacunary $\mathcal{I}$-invariant convergence, Cumhuriyet Science Journal 41 (2020), no. 3, 617-624. https://doi.org/10.17776/csj.689877
  26. U. Ulusu and E. Dundar, $\mathcal{I}$-lacunary statistical convergence of sequences of sets, Filomat 28 (2014), 1567-1574. https://doi.org/10.2298/FIL1408567U
  27. U. Ulusu and E. Gulle, Some statistical convergence types of order α for double set sequences, Facta Univ. Ser. Math. Inform. 35 (2020), no. 3, 595-603.
  28. U. Yamanci and M. Gurdal, Statistical convergence and operators on Fock space, New York Journal of Mathematics 22 (2016), 199-207.
  29. U. Yamanci, A.A. Nabiev and M. Gurdal, Statistically localized sequences in 2-normed spaces, Honam Mathematical J. 42 (2020), no. 1, 161-173. https://doi.org/10.5831/HMJ.2020.42.1.161