Acknowledgement
본 논문은 농촌진흥청 공동연구사업(과제번호: PJ01578901)과 안동대학교 기본연구지원사업에 의해 이루어졌다.
References
- Ahn, J., Choi, K., Huang, S.Y., Al Baki, M.A., Ahmed, S., Kim, Y., 2018. Calcium/calmodulin-dependent protein kinase II of the oriental fruit fly, Bactrocera dorsalis, and its association with rapid cold hardiness. J. Asia Pac. Entomol. 21, 1275-1282. https://doi.org/10.1016/j.aspen.2018.09.010
- Bale, J.S., Hayward, S.A., 2010. Insect overwintering in a changing climate. J. Exp. Biol. 213, 980-994. https://doi.org/10.1242/jeb.037911
- Barbagallo, B., Garrity, P.A., 2015. Temperature sensation in Drosophila. Curr. Opin. Neurobiol. 34, 8-13. https://doi.org/10.1016/j.conb.2015.01.002
- Brodsgaard, H.F., 1993. Cold hardiness and tolerance to submergence in water in Frankliniella occidentalis (Thysanoptera: Thripidae). Environ. Entomol. 22, 647-653. https://doi.org/10.1093/ee/22.3.647
- Costanzo, J.P., Humphreys, T.L., Lee, Jr., R.E., Moore, J.B., Lee, M.R., Wyman, J.A., 1998. Long-term reduction of cold hardiness following ingestion of ice-nucleating bacteria in the Colorado potato beetle, Leptinotarsa decemlineata. J. Insect Physiol. 44, 1173-1180. https://doi.org/10.1016/S0022-1910(98)00082-1
- Ditrich, T., 2018. Supercooling point is an individually fixed metric of cold tolerance in Pyrrhocoris apterus. J. Therm. Biol. 74, 208-213. https://doi.org/10.1016/j.jtherbio.2018.04.004
- Dong, W., Cheng, T., Li, C., Xu, C., Long, P., Chen, C., Zhou, S., 2014. Discriminating plants using the DNA barcode rbcLb: an appraisal based on a large data set. Mol. Ecol. Resour. 14, 336-343. https://doi.org/10.1111/1755-0998.12185
- Feng, Q., 2014. Temperature sensing by thermal TRP channels: thermodynamic basis and molecular insights. Curr. Top. Membr. 74, 19-50. https://doi.org/10.1016/B978-0-12-800181-3.00002-6
- Gallio, M., Ofstad, T.A., Macpherson, L.J., Wang, J.W., Zuker, C.S., 2011. The coding of temperature in the Drosophila brain. Cell 144, 614-624. https://doi.org/10.1016/j.cell.2011.01.028
- Hamada, F.N., Rosenzweig, M., Kang, K., Pulver, S.R., Ghezzi, A., Jegla, T.J., Garrity, P.A., 2008. An internal thermal sensor controlling temperature preference in Drosophila. Nature 454, 217-220. https://doi.org/10.1038/nature07001
- Hasebe, M., Omori, T., Nakazawa, M., Sano, T., Kato, M., Iwatsuki, K., 1994. rbcL gene sequences provide evidence for the evolutionary lineages of leptosporangiate ferns. Proc. Natl. Acad. Sci. USA 91, 5730-5734. https://doi.org/10.1073/pnas.91.12.5730
- Ishida, H., Murai, T., Sonoda, S., Yoshida, H., Izumi, Y., Tsumuki, H., 2003. Effects of temperature and photoperiod on development and oviposition of Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae). Appl. Entomol. Zool. 38, 65-68. https://doi.org/10.1303/aez.2003.65
- Jung, J.K., Seo, B.Y., Kim, Y., Lee, S.W., 2016. Can Maruca vitrata (Lepidoptera: Crambidae) over-winter in Suwon area? Korean J. Appl. Entomol. 55, 439-444. https://doi.org/10.5656/KSAE.2016.11.0.060
- Kim, Y., Kim, N., 1997. Cold hardiness in Spodoptera exigua (Lepidoptera: Noctuidae). Environ. Entomol. 26, 1117-1123. https://doi.org/10.1093/ee/26.5.1117
- Kim, Y., Song, W., 2000. Effect of thermoperiod and photoperiod on cold tolerance of Spodoptera exigua (Lepidoptera: Noctuidae). Environ. Entomol. 29, 868-873. https://doi.org/10.1603/0046-225X-29.5.868
- Kim, Y., Lee, D.W., Jung, J.K., 2017. Rapid cold-hardening of a subtropical species, Maruca vitrata (Lepidoptera: Crambidae), accompanies hypertrehalosemia by upregulating trehalose-6-phosphate synthase. Environ. Entomol. 46, 1432-1438. https://doi.org/10.1093/ee/nvx153
- Kim, C.Y., Choi, D.Y., Kang, J.H., Ahmed, S., Kil, E.J., Kwon, G.M., Lee, G.S., Kim, Y., 2021. Thrips infesting hot pepper cultured in greenhouses and variation in gene sequences encoded in TSWV. Korean J. Appl. Entomol. 60, 381-401.
- Kita, Y., Ito, M., 2000. Nuclear ribosomal ITS sequences and phylogeny in East Asian Aconitum subgenus Aconitum (Ranunculaceae), with special reference to extensive polymorphism in individual plants. Plant Syst. Evol. 225, 1-13. https://doi.org/10.1007/bf00985455
- Lee, G.S., Lee, J.H., Kang, S.H., Woo, K.S., 2001. Thrips species (Thysanoptera: Thripidae) in winter season and their vernal activities on Jeju island, Korea. J. Asia Pac. Entomol. 4, 115-122. https://doi.org/10.1016/S1226-8615(08)60112-0
- Lee, R.E. Jr., Damodaran, K., Yi, S.X., Lorigan, G.A., 2006. Rapid cold-hardening increases membrane fluidity and cold tolerance of insect cells. Cryobiology 52, 459-463. https://doi.org/10.1016/j.cryobiol.2006.03.003
- Li, K., Gong, Z., 2017. Feeling hot and cold: thermal sensation in Drosophila. Neurosci. Bull. 33, 317-322. https://doi.org/10.1007/s12264-016-0087-9
- Ni, L., Bronk, P., Chang, E.C., Lowell, A.M., Flam, J.O., Panzano, V.C., Theobald, D.L., Griffith, L.C., Garrity, P.A., 2013. A gustatory receptor paralogue controls rapid warmth avoidance in Drosophila. Nature 500, 580-584. https://doi.org/10.1038/nature12390
- Ni, L., Klein, M., Svec, K.V., Budelli, G., Chang, E.C., Ferrer, A.J., Benton, R., Samueal, A.D.T., Garrity, P.A., 2016. The ionotropic receptors IR21a and IR25a mediate cool sensing in Drosophila. Elife 5, e13254. https://doi.org/10.7554/elife.13254
- Park, Y., Kim, Y., 2013. RNA interference of glycerol biosynthesis suppresses rapid cold hardening of the beet armyworm, Spodoptera exigua. J. Exp. Biol. 216, 4196-4203. https://doi.org/10.1242/jeb.092031
- Park, Y., Kim, K., Kim, Y., 2014. Rapid cold hardening of Thrips palmi (Thysanoptera: Thripidae). Environ. Entomol. 43, 1076-1083. https://doi.org/10.1603/EN13291
- SAS Institute, Inc., 1989. SAS/STAT User's Guide. SAS Institute, Inc., Cary, NC.
- Sinclair, B.J., 2015. Linking energetics and overwintering in temperate insects. J. Therm. Biol. 54, 5-11. https://doi.org/10.1016/j.jtherbio.2014.07.007
- Storey, K.B., 1997. Organic solutes in freezing tolerance. Comp. Biochem. Physiol. 117A, 319-326. https://doi.org/10.1016/S0300-9629(96)00270-8
- Storey, K.B., Storey, J.M., 2013. Molecular biology of freezing tolerance. Comp. Physiol. 3, 1283-1308. https://doi.org/10.1002/cphy.c130007
- Teets, N.M., Yi, S.X., Lee, R.E. Jr., Denlinger, D.L., 2013. Calcium signaling mediates cold sensing in insect tissues. Proc. Natl. Acad. Sci. USA 110, 9154-9159. https://doi.org/10.1073/pnas.1306705110
- Teets, N.M., Gantz, J.D., Kawarasaki, Y., 2020. Rapid cold hardening: ecological relevance, physiological mechanisms and new perspectives. J. Exp. Biol. 223, jeb203448. https://doi.org/10.1242/jeb.203448
- Teets, N.M., Denlinger, D.L., 2014. Surviving in a frozen desert: environmental stress physiology of terrestrial Antarctic arthropods. J. Exp. Biol. 217, 84-93. https://doi.org/10.1242/jeb.089490
- Toxopeus, J., Sinclair, B.J., 2018. Mechanisms underlying insect freeze tolerance. Biol. Rev. Camb. Philos. Soc. 93, 1891-1914. https://doi.org/10.1111/brv.12425
- Tsumuki, H., Ishida, H., Yoshida, H., Sonoda, S., Izumi, Y., Murai, T., 2007. Cold hardiness of adult western flower thrips, Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae). Appl. Entomo. Zool. 42, 223-229. https://doi.org/10.1303/aez.2007.223
- White, T.J., Bruns, T., Lee, S., Taylor, J., 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics, in: Innis, M.A., Gelfand, D.H., Sninsky, J.J., White, T.J. (Eds), PCR protocols. A guide to methods and applications. Academic Press, SanDiego, CA, USA, pp. 315-322.
- Yi, S.X., Lee, R.E. Jr., 2003. Detecting freeze injury and seasonal cold-hardening of cells and tissues in the gall fly larvae, Eurosta solidaginis (Diptera: Tephritidae) using fluorescent vital dyes. J. Insect Physiol. 49, 999-1004. https://doi.org/10.1016/S0022-1910(03)00168-9
- Zachariassen, K.E., Kristiansen, E., 2000. Ice nucleation and antinucleation in nature. Cryobiology 41, 257-279. https://doi.org/10.1006/cryo.2000.2289
- Zhang, B., Qian, W., Qiao, X., Xi, Y., Wan, F., 2019. Invasion biology, ecology, and management of Frankliniella occidentalis in China. Arch. Insect Biochem. Physiol. 102, e21613. https://doi.org/10.1002/arch.21613