DOI QR코드

DOI QR Code

Strength and toughness prediction of slurry infiltrated fibrous concrete using multilinear regression

  • Shelorkar, Ajay P. (Department of Civil Engineering, K. K. Wagh Institute of Engineering Education and Research) ;
  • Jadhao, Pradip D. (Department of Civil Engineering, K. K. Wagh Institute of Engineering Education and Research)
  • 투고 : 2021.05.13
  • 심사 : 2022.02.08
  • 발행 : 2022.02.25

초록

This paper aims to adapt Multilinear regression (MLR) to predict the strength and toughness of SIFCON containing various pozzolanic materials. Slurry Infiltrated Fibrous Concrete (SIFCON) is one of the most common terms used in concrete manufacturing, known for its benefits such as high ductility, toughness and high ultimate strength. Assessment of compressive strength (CS.), flexural strength (F.S.), splitting tensile strength (STS), dynamic elasticity modulus (DME) and impact energy (I.E.) using the experimental approach is too costly. It is time-consuming, and a slight error can lead to a repeat of the test and, to solve this, alternative methods are used to predict the strength and toughness properties of SIFCON. In the present study, the experimentally investigated SIFCON data about various mix proportions are used to predict the strength and toughness properties using regression analysis-multilinear regression (MLR) models. The input parameters used in regression models are cement, fibre, fly ash, Metakaolin, fine aggregate, blast furnace slag, bottom ash, water-cement ratio, and the strength and toughness properties of SIFCON at 28 days is the output parameter. The models are developed and validated using data obtained from the experimental investigation. The investigations were done on 36 SIFCON mixes, and specimens were cast and tested after 28 days of curing. The MLR model yields correlation between predicted and actual values of the compressive strength (C.S.), flexural strength, splitting tensile strength, dynamic modulus of elasticity and impact energy. R-squared values for the relationship between observed and predicted compressive strength are 0.9548, flexural strength 0.9058, split tensile strength 0.9047, dynamic modulus of elasticity 0.8611 for impact energy 0.8366. This examination shows that the MLR model can predict the strength and toughness properties of SIFCON.

키워드

참고문헌

  1. Abbas, A.S. and Kadhum, M.M. (2020), "Impact of fire on mechanical properties of slurry infiltrated fiber concrete (SIFCON)", Civil Eng. J., 6, 12-23. http://doi.org/10.28991/cej2020-SP(EMCE)-02.
  2. Atici, U. (2011), "Prediction of the strength of mineral admixture concrete using multivariable regression analysis and an artificial neural network", Expert Syst. Appl., 38(1), 9609-9618. https://doi.org/10.1016/j.eswa.2011.01.156.
  3. Beglarigale, A., Caglar Y., Huseyin Y. and Halit Y. (2016), "Flexural performance of sifcon composites subjected to high temperature", Constr. Build. Mater., 104(1), 99-108. https://doi.org/10.1016/j.conbuildmat.2015.12.034.
  4. Bragov, A.M., Petrov, Y.V., Karihaloo, B.L., Konstantinov, A.Y., Lamzin, D.A., Lomunov, A.K. and Smirnov, I.V. (2013), "Dynamic strengths and toughness of an ultra-high performance fibre reinforced concrete", Eng. Fract. Mech., 110, 477-488. https://doi.org/10.1016/j.engfracmech.2012.12.019.
  5. Dadmand, B, Pourbaba, M, Sadaghian, H. and Mirmiran, A. (2020), "Effectiveness of steel fibers in ultra-high- performance fiber-reinforced concrete construction," Adv. Concrete Constr., 10(3), 195-209. https://doi.org/10.12989/acc.2020.10.3.195.
  6. El-Dieb, A.S. (2009), "Mechanical, durability and microstructural characteristics of ultrahigh-strength self-compacting concrete incorporating steel fibres", Mater. Des., 30(10), 4286-4292. https://doi.org/ 10.1016/j.matdes.2009.04.024.
  7. Gonzalez-Taboada, I., Gonzalez-Fonteboa, B., Martinez-Abella, F. and Perez-Ordonez, J.L. (2016), "Prediction of the mechanical properties of structural recycled concrete using multivariable regression and genetic programming", Constr. Build. Mater., 106, 480-499. https://doi.org/10.1016/j.conbuildmat.2015.12.136.
  8. Guler, S. and Yavuz, D. (2019), "Post-cracking behavior of hybrid fiber-reinforced concrete-filled steel tube beams", Constr. Build. Mater., 205, 285-305. https://doi.org/10.1016/j.conbuildmat.2019.01.192.
  9. Guler, S., Akbulut, Z.F., Siad, H. and Lachemi, M. (2021), "Effect of macro polypropylene, polyamide and steel fibers on the residual properties of SCC at ambient and elevated temperatures", Constr. Build. Mater., 289, 123154. https://doi.org/10.1016/j.conbuildmat.2021.123154.
  10. Guler, S., O ker, B. and Akbulut, Z.F. (2021), "Workability, strength and toughness properties of different types of fiber-reinforced wet-mix shotcrete", Struct., 31, 781-791. https://doi.org/10.1016/j.istruc.2021.02.031.
  11. Guler, S., Yavuz, D. and Aydin, M. (2019), "Hybrid fiber reinforced concrete-filled square stub columns under axial compression", Eng. Struct., 198, 109504. https://doi.org/10.1016/j.engstruct.2019.109504.
  12. Guler, S., Yavuz, D., Korkut, F. and Ashour, A. (2019), "Strength prediction models for steel, synthetic, and hybrid fiber reinforced concretes", Struct. Concrete, 20(1), 428-445. https://doi.org/10.1002/suco.201800088.
  13. Hameed, D.H., Alrubaie, M.F., Salih, S.A., Habeeb, G.M. and Abbas, W.A. (2019), "Slurry infiltrated fiber concrete as sustainable solution for defected buildings", Eng. Tech. J., 37(1), 132-138. https://doi.org/10.30684/etj.37.1C.21.
  14. Ipek, M. and Aksu, M. (2019), "The effect of different types of fiber on flexure strength and fracture toughness in SIFCON", Constr. Build. Mater., 214(3), 207-218. https://doi.org/10.1016/J.CONBUILDMAT.2019.04.055.
  15. Janani S. and Santhi A.S. (2018), "Multiple linear regression model for mechanical properties and impact resistance of concrete with fly ash and hooked-end steel fibers", Int. J. Tech., 9(3), 526-536. https://doi.org/10.14716/ijtech.v9i3.763.
  16. Karthiyaini, S., Senthamaraikannan, K., Priyadarshini, J., Gupta, K. and Shanmugasundaram, M. (2019), "Prediction of mechanical strength of fiber admixed concrete using multiple regression analysis and artificial neural network", Adv. Mater. Sci. Eng., 2019, 1-7. https://doi.org/10.1155/2019/4654070.
  17. Khademi, F., Akbari, M., Jamal, S.M. and Nikoo, M. (2017), "Multiple linear regression, artificial neural network, and fuzzy logic prediction of 28 days compressive strength of concrete", Front. Struct. Civil Eng., 11(1), 90-99. https://doi.org/10.1007/s11709-016-0363-9.
  18. Khamees, S.S., Kadhum, M.M. and Alwash, N.A. (2020), "Effects of steel fibers geometry on the mechanical properties of SIFCON concrete", Civil Eng. J., 6(1), 21-33. https://doi.org/10.28991/cej-2020- 03091450.
  19. Kheder, G.F., Gabban, A.M.A. and Abid, S.M. (2003), "Mathematical model for the prediction of cement compressive strength at the ages of 7 and 28 days within 24 hours", Mater. Struct., 36, 693-701. https://doi.org/10.1007/BF02479504.
  20. Kim, S.K. and Choi, J.H. (2006), "Compressive and tensile strength properties of slurry infiltrated fiber concrete", J. Korea Concrete Inst., 18(5), 703-708. https://doi.org10.4334/jkci.2006.18.5.703.
  21. Lankard, D.R. (1984), "Properties application slurry infiltrated fiber concrete (SIFCON)", Concrete Int., 12(6), 44-47.
  22. Murali, G., Venkatesh J., Lokesh N., Reddy, N.T. and Karthikeyan, K. (2017), "Comparative experimental and analytical modeling of impact energy dissipation of ultra-high performance fibre reinforced concrete", KSCE J. Civil Eng., 22(8), 1-8. https://doi.org/ 10.1007/s12205-017-1678-3.
  23. Nuruddin, M.F., Ullah Khan, S., Shafiq, N. and Ayub, T. (2015), "Strength prediction models for pva fiber-reinforced high-strength concrete", J. Mater. Civil Eng., 27(12), 1-16. https://doi.org/10.1061/(asce)mt.1943-5533.0001279.
  24. Parameswaran, V.S., Krishnamoorthy, T.S. and Balasubramanian, K. (1990), "Behaviour of high volume fibre cement mortar in flexure", Cement Concrete Compos., 12, 293-301. https://doi.org/10.1016/0958-9465(90)90008-L.
  25. Rahim, M.A., Ghazaly, Z.M., Raja Mamat R.N., Azizan M.A., Isa, N.F. and Shahidan, S. (2016), "Experimental study of slurry infiltrated fiber reinforced concrete", Mater. Sci. Forum, 857(1), 363-366. https://doi.org/10.4028/www.scientific.net/MSF.857.363.
  26. Rao, S.H., Ghorpade, V.G., Ramana, N.V. and Gnaneswar, K. (2010), "Response of SIFCON two-way slabs under impact loading", Int. J. Impact Eng., 37(4), 452-458. https://doi.org/10.1016/j.ijimpeng.2009.06.003.
  27. Sam, M.K. (2003), "Predicting the compressive strength of concrete", 28th Conference on Our World in Concrete Structures, Singapore, August.
  28. Savino, V., Lanzoni, L., Tarantino, A.M. and Viviani, M. (2018), "Simple and effective models to predict the compressive and tensile strength of HPFRC as the steel fiber content and type changes", Compos. Part B Eng., 137, 153-162. https://doi:10.1016/j.compositesb.2017.11.003.
  29. Savino, V., Lanzoni, L., Tarantino, A.M. and Viviani, M. (2019), "An extended model to predict the compressive, tensile and flexural strengths of HPFRCs and UHPFRCs: Definition and experimental validation", Compos. Part B Eng., 163, 681-689. https://doi:10.1016/j.compositesb.2018.12.113.
  30. Sengul, O. (2018), "Mechanical properties of slurry infiltrated fiber concrete produced with waste steel fibers", Constr. Build. Mater., 186(20), 1082-1091. https://doi.org/10.1016/j.conbuildmat.2018.08.042.
  31. Shelorkar, A.P. and Jadhao, P.D. (2018), "Determination of mechanical properties of slurry infiltrated steel fiber concrete using fly ash and metakaolin", Int. J. Eng. Tech., 7(4.5), 262-267. https://doi.org/10.14419/ijet.v7i4.5.20082.
  32. Shelorkar, A.P. and Jadhao, P.D. (2018), "Durability assessment of slurry infiltrated fiber concrete by using various pozzolanic materials", Ind. Concrete J., 92(4), 56-61.
  33. Shelorkar, A.P. and Jadhao, P.D. (2018), "Statistical analysis for effect of mix-parameters on properties of slurry infiltrated fiber concrete using various pozzolanic materials", SEC18: Proceedings of the 11th Structural Engineering Convention 2018 Jadavpur University, Kolkata, December.
  34. Shelorkar, A.P. and Jadhao, P.D. (2019) "Sorptivity of slurry infiltrated fiber concrete containing fly ash and metakaolin", Ukieri Concrete Congress Concrete: The Global Builder, Jalandhar, March.
  35. Sobhani J., Najimi M., Pourkhorshidi A.R. and Parhizkar T. (2010), "Prediction of the compressive strength of no-slump concrete: A comparative study of regression, neural network and ANFIS models", Constr. Build. Mater., 24(5), 709-718. https://doi.org/10.1016/j.conbuildmat.2009.10.037.
  36. Sonebi, M., Svermova, L. and Bartos, P.J.M. (2004), "Factorial design of cement slurries containing limestone powder for self-consolidating slurry-infiltrated fiber concrete", Mater. J., 101(2), 136-145.
  37. Sonebi, M., Svermova, L. and Bartos, P.J.M. (2005), "Statistical modelling of cement slurries for self- compacting SIFCON containing silica fume", Mater. Struct., 38(1) 79-86. https://doi.org/10.1007/bf02480578.
  38. Suhad, M.A. (2001), "Mathematical model for the Prediction of cement compressive strength at the ages of 7 and 28 days within 24 hours", MSc Thesis, Al-Mustansiriya University, Baghdad.
  39. Tang, C.W. (2021), "Mix design and early-age mechanical properties of ultra-high performance concrete", Adv. Concrete Constr., 11(4), 335-345. https://doi.org/10.12989/acc.2021.11.4.335.
  40. Thomas, J. and Ramaswamy, A. (2007), "Mechanical properties of steel fiber-reinforced concrete", J. Mater. Civil Eng., 19(5), 385-392. https://doi.org/10.1061/(asce)0899-1561(2007)19:5(385).
  41. Trottier, J. and Banthia, N. (1994), "Toughness characterization of steel-fiber reinforced concrete", J. Mater. Civil Eng., 6(2), 264-289. https://doi.org/10.1061/(asce)0899- 1561(1994)6:2(264).
  42. Yan, A., Wu, K. and Zhang, X. (2002), "A quantitative study on the surface crack pattern of concrete with high content of steel fiber", Cement Concrete Res., 32(9), 1371-1375. https://doi.org/10.1016/S0008-8846(02)00788-3.
  43. Yazici, H., Aydin, S., Yigiter, H., Yardimci, M.Y. and Alptuna, G. (2010), "Improvement on SIFCON performance by fiber orientation and high-volume mineral admixtures", J. Mater. Civil Eng., 22(11), 1093-1101. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000114.
  44. Yazici, H., Yigiter, H., Aydin, S. and Baradan, B. (2006), "Autoclaved SIFCON with high volume Class C fly ash binder phase", Cement Concrete Res., 36(3), 481-486. https://doi.org/10.1016/j.cemconres.2005.10.002.
  45. Yoo, D.Y., Yoon, Y.S. and Banthia, N. (2015), "Predicting the post-cracking behavior of normal- and high-strength steel-fiber-reinforced concrete beams", Constr. Build. Mater., 93, 477-485. https://doi.org/10.1016/j.conbuildmat.2015.06.006.
  46. Yu, R., Spiesz, P. and Brouwers, H.J.H. (2016), "Energy absorption capacity of a sustainable Ultra-High Performance Fibre Reinforced Concrete (UHPFRC) in quasi-static mode and under high-velocity projectile impact", Cement Concrete Compos., 68, 109-122.https://doi.org/10.1016/j.cemconcomp.2016.02.012.
  47. Zain, M.F.M., Mahmud, H.B., Ilham, A. and Faizal, M. (2002), "Prediction of splitting tensile strength of high-performance concrete", Cement Concrete Res., 32(8), 1251-1258. https://doi.org/10.1016/S0008-8846(02)00768-8.