DOI QR코드

DOI QR Code

Axial frequency analysis of axially functionally graded Love-Bishop nanorods using surface elasticity theory

  • 투고 : 2021.04.27
  • 심사 : 2022.03.07
  • 발행 : 2022.03.10

초록

This work presents a comprehensive study on the surface energy effect on the axial frequency analyses of AFGM nanorods in cylindrical coordinates. The AFGM nanorods are considered to be thin, relatively thick, and thick. In thin nanorods, effects of the inertia of lateral motions and the shear stiffness are ignored; in relatively thick nanorods, only the first one is considered; and in thick nanorods, both of them are considered in the kinetic energy and the strain energy of the nanorod, respectively. The surface elasticity theory which includes three surface parameters called surface density, surface stress, and surface Lame constants, is implemented to consider the size effect. The power-law form is considered for variation of the material properties through the axial direction. Hamilton's principle is used to derive the governing equations and boundary conditions. Due to considering the surface stress, the governing equation and boundary condition become inhomogeneous. After homogenization of them using an appropriate change of variable, axial natural frequencies are calculated implementing harmonic differential quadrature (HDQ) method. Comprehensive results including effects of geometric parameters and various material properties are presented for a wide range of boundary condition types. It is believed that this study is a comprehensive one that can help posterities for design and manufacturing of nano-electro-mechanical systems.

키워드

참고문헌

  1. Aal, A.A., El-Sheikh, S. and Ahmed, Y. (2009), "Electrodeposited composite coating of Ni-W-P with nano-sized rod-and spherical-shaped SiC particles", Mater. Res. Bull., 44(1), 151-159. https://doi.org/10.1016/j.materresbull.2008.03.008.
  2. Akgoz, B. and Civalek, O . (2013), "Free vibration analysis of axially functionally graded tapered Bernoulli-Euler microbeams based on the modified couple stress theory", Compos. Struct., 98, 314-322. https://doi.org/10.1016/j.compstruct.2012.11.020.
  3. Akgoz, B. and Civalek, O . (2013), "Longitudinal vibration analysis of strain gradient bars made of functionally graded materials (FGM)", Compos. Part B-Eng., 55, 263-268. https://doi.org/10.1016/j.compositesb.2013.06.035.
  4. Ashok, C. and Rao, K.V. (2014), "ZnO/TiO2 nanocomposite rods synthesized by microwave-assisted method for humidity sensor application", Superlattice. Microst., 76, 46-54. https://doi.org/10.1016/j.spmi.2014.09.029.
  5. Aydogdu, M., Arda, M. and Filiz, S. (2018), "Vibration of axially functionally graded nano rods and beams with a variable nonlocal parameter", Advances Nano Res., 6(3), 257. http://dx.doi.org/10.12989/anr.2018.6.3.257.
  6. Civalek, O. (2004), "Application of differential quadrature (DQ) and harmonic differential quadrature (HDQ) for buckling analysis of thin isotropic plates and elastic columns", Eng. Struct., 26(2), 171-186. https://doi.org/10.1016/j.engstruct.2003.09.005.
  7. Ebrahimi, F. and Barati, M.R. (2017), "Through-the-length temperature distribution effects on thermal vibration analysis of nonlocal strain-gradient axially graded nanobeams subjected to nonuniform magnetic field", J. Therm. Stresses, 40(5), 548-563. https://doi.org/10.1080/01495739.2016.1254076.
  8. Eremeyev, V.A., Rosi, G. and Naili, S. (2020), "Transverse surface waves on a cylindrical surface with coating", Int. J. Eng. Sci., 147, 103188. https://doi.org/10.1016/j.ijengsci.2019.103188.
  9. Ghayesh, M.H. (2018a), "Nonlinear vibration analysis of axially functionally graded shear-deformable tapered beams", Appl. Math. Model., 59, 583-596. https://doi.org/10.1016/j.apm.2018.02.017.
  10. Ghayesh, M.H. (2018b), "Nonlinear Vibrations of Axially Functionally Graded Timoshenko Tapered Beams", J. Comput. Nonlin. Dyn., 13, 041002-1. https://doi.org/10.1115/1.4039191.
  11. Ghayesh, M.H. (2019a), "Nonlinear oscillations of FG cantilevers", Appl. Acoust., 145, 393-398. https://doi.org/10.1016/j.apacoust.2018.08.014.
  12. Ghayesh, M.H. (2019b), " Viscoelastic mechanics of Timoshenko functionally graded imperfect microbeams", Compos. Struct., 225, 110974. https://doi.org/10.1016/j.compstruct.2019.110974.
  13. Ghayesh, M.H. (2019c), "Asymmetric viscoelastic nonlinear vibrations of imperfect AFG beams", Appl. Acoust., 154, 121-128. https://doi.org/10.1016/j.apacoust.2019.03.022.
  14. Ghayesh, M.H. (2019d), " Viscoelastic dynamics of axially FG microbeams", Int. J. Eng. Sci., 135, 75-85. https://doi.org/10.1016/j.ijengsci.2018.10.005.
  15. Ghayesh, M.H. (2019e), " Mechanics of viscoelastic functionally graded microcantilevers", Eur. J. Mech. A-Solid, 73, 492-499. https://doi.org/10.1016/j.euromechsol.2018.09.001.
  16. Gurtin, M.E. and Murdoch, A.I. (1975), "A continuum theory of elastic material surfaces", Arch. Ration. Mech. An., 57(4), 291-323. https://doi.org/10.1007/BF00261375.
  17. Hosseini-Hashemi, S., Bedroud, M. and Nazemnezhad, R. (2013), "An exact analytical solution for free vibration of functionally graded circular/annular Mindlin nanoplates via nonlocal elasticity", Compos. Struct., 103, 108-118. https://doi.org/10.1016/j.compstruct.2013.02.022.
  18. Hosseini-Hashemi, S. and Nazemnezhad, R. (2013), "An analytical study on the nonlinear free vibration of functionally graded nanobeams incorporating surface effects", Compos. Part B-Eng., 52, 199-206. https://doi.org/10.1016/j.compositesb.2013.04.023.
  19. Nazemnezhad, R. and Fahimi, P. (2017), "Free torsional vibration of cracked nanobeams incorporating surface energy effects", Appl. Math. Mech.-Engl., 38(2), 217-230. https://doi.org/10.1007/s10483-017-2167-9.
  20. Nazemnezhad, R. and Hosseini-Hashemi, S. (2014), "Nonlocal nonlinear free vibration of functionally graded nanobeams", Compos. Struct., 110, 192-199. https://doi.org/10.1016/j.compstruct.2013.12.006.
  21. Nazemnezhad, R. and Kamali, K. (2018), "Free axial vibration analysis of axially functionally graded thick nanorods using nonlocal Bishop's theory", Steel Compos. Struct., 28(6), 749-758. https://doi.org/10.12989/scs.2018.28.6.749.
  22. Nazemnezhad, R., Salimi, M., Hashemi, S.H. and Sharabiani, P.A. (2012), "An analytical study on the nonlinear free vibration of nanoscale beams incorporating surface density effects", Compos. Part B-Eng., 43(8), 2893-2897. https://doi.org/10.1016/j.compositesb.2012.07.029.
  23. Nazemnezhad, R. and Shokrollahi, H. (2019), "Free axial vibration analysis of functionally graded nanorods using surface elasticity theory", Modares Mech. Eng., 18(9), 131-141.
  24. Nazemnezhad, R. and Shokrollahi, H. (2020), "Free axial vibration of cracked axially functionally graded nanoscale rods incorporating surface effect", Steel Compos. Struct., 35(3), 449-462. http://dx.doi.org/10.12989/scs.2020.35.3.449.
  25. Patil, A.V., Beker, A.F., Wiertz, F.G., Heering, H.A., Coslovich, G., Vlijm, R. and Oosterkamp, T.H. (2010), "Fabrication and characterization of polymer insulated carbon nanotube modified electrochemical nanoprobes", Nanoscale, 2(5), 734-738. https://doi.org/10.1039/B9NR00281B.
  26. Rajasekaran, S. and Bakhshi Khaniki, H. (2019), "Finite element static and dynamic analysis of axially functionally graded nonuniform small-scale beams based on nonlocal strain gradient theory", Mech. Adv. Mater. Struc., 26(14), 1245-1259. https://doi.org/10.1080/15376494.2018.1432797.
  27. Rao, S.S. (2007), Vibration of Continuous Systems, Wiley Online Library.
  28. Shahba, A. and Rajasekaran, S. (2012), "Free vibration and stability of tapered Euler-Bernoulli beams made of axially functionally graded materials", Appl. Math. Model., 36(7), 3094-3111. https://doi.org/10.1016/j.apm.2011.09.073.
  29. Simsek, M. (2012), "Nonlocal effects in the free longitudinal vibration of axially functionally graded tapered nanorods", Comp. Mater. Sci., 61, 257-265. https://doi.org/10.1016/j.commatsci.2012.04.001.
  30. Sinir, S., Cevik, M. and Sinir, B.G. (2018), "Nonlinear free and forced vibration analyses of axially functionally graded Euler-Bernoulli beams with non-uniform cross-section", Compos. Part B-Eng., 148, 123-131. https://doi.org/10.1016/j.compositesb.2018.04.061.
  31. Wang, H., Liu, C. and Ding, H. (2009), "Exact solution and transient behavior for torsional vibration of functionally graded finite hollow cylinders", Acta Mech. Sinica, 25(4), 555-563. https://doi.org/10.1007/s10409-009-0251-9.
  32. Watanabe, Y., Inaguma, Y., Sato, H. and Miura-Fujiwara, E. (2009), "A novel fabrication method for functionally graded materials under centrifugal force: The centrifugal mixed-powder method", Materials, 2(4), 2510-2525. https://doi.org/10.3390/ma2042510.
  33. Xie, K., Wang, Y. and Fu, T. (2019), "Dynamic response of axially functionally graded beam with longitudinal-transverse coupling effect", Aerosp. Sci. Technol., 85, 85-95. https://doi.org/10.1016/j.ast.2018.12.004.
  34. Yayli, M.O . (2018), "Free longitudinal vibration of a nanorod with elastic spring boundary conditions made of functionally graded material", Micro Nano Lett., 13(7), 1031-1035. https://doi.org/10.1049/mnl.2018.0181.
  35. Zarezadeh, E., Hosseini, V. and Hadi, A. (2020), "Torsional vibration of functionally graded nano-rod under magnetic field supported by a generalized torsional foundation based on nonlocal elasticity theory", Mech. Based Des. Struc., 48(4), 480-495. https://doi.org/10.1080/15397734.2019.1642766.
  36. Zeighampour, H. and Beni, Y.T. (2015), "Free vibration analysis of axially functionally graded nanobeam with radius varies along the length based on strain gradient theory", Appl. Math. Model., 39(18), 5354-5369. https://doi.org/10.1016/j.apm.2015.01.015.
  37. Zhang, T., Kumari, L., Du, G.H., Li, W.Z., Wang, Q.W., Balani, K. and Agarwal, A. (2009), "Mechanical properties of carbon nanotube-alumina nanocomposites synthesized by chemical vapor deposition and spark plasma sintering", Compos. Part A-Appl. S., 40(1), 86-93. https://doi.org/10.1016/j.compositesa.2008.10.003.
  38. Zheng, S., Chen, D. and Wang, H. (2019), "Size dependent nonlinear free vibration of axially functionally graded tapered microbeams using finite element method", Thin Wall. Struct., 139, 46-52. https://doi.org/10.1016/j.tws.2019.02.033.
  39. Zheng, Y., Wang, S., You, M., Tan, H. and Xiong, W. (2005), "Fabrication of nanocomposite Ti (C, N)-based cermet by spark plasma sintering", Mater. Chem. Phys., 92(1), 64-70. https://doi.org/10.1016/j.matchemphys.2004.12.031.