초록
최근 코로나19를 예방하기 위해 마스크 착용 유무와 체온을 확인하는 곳이 많아졌다. 그러나 이러한 것은 사람이 수동으로 측정하거나 한 명씩 기계 앞에서 측정하는 방식이 대부분이므로 측정 방식에 따라 결과가 달라지고 인력 낭비가 발생한다. 또한 기계는 일반적으로 최고 온도만을 측정하므로 발열의 기준 또한 신뢰할 수 없다. 입구에 사람이 몰려 병목이 발생할 수 있으며 측정 장소는 대부분 입구 하나이므로 확진자의 동선 추적시에도 불편하다. 따라서 본 연구에서는 발열자와 마스크 미착용자를 카메라, 열화상 카메라, Haar Cascade 및 결괏값 선별 알고리즘을 활용하여 자동으로 분류하고 실시간으로 알려 전염병 확산을 억제하는 방법에 대해 제안하고자 한다.
Recently, place that you need to check wearing mask and body temperature to prevent the proliferation of COVID-19 increased. But these things often measured by man manually or by machine one by one, result may be different by measuring ways, so it wastes workforce. Also, the machine generally just measures the highest temperature of the face, criteria for fever can't be trusted too. A bottleneck may occur due to crowding of people at the entrance, and because most of the measurement sites are at one entrance, it is inconvenient to track the movement of COVID-19 Confirmed cases. Thus, in this study, we intend to propose a method for suppressing the spread of infection by automatically classifying and displaying in real time using camera, thermal camera, Haar Cascade, and result selection algorithm.