Acknowledgement
This research was supported by the "Real National R&D Challenge Program" grant funded by the Korea Institute of Human Resources Development in Science & Technology (NRF-4R210101523S000100), Hallym University Research Fund, and the National Research Foundation of Korea funded by the Ministry of Education (2020R1l1A3070726). We thank Youngmi Kim for assistance with the experimental procedure and the overall study.
References
- Alam Bony B, Kievit FM : A role for nanoparticles in treating traumatic brain injury. Pharmaceutics 11 : 473, 2019 https://doi.org/10.3390/pharmaceutics11090473
- Bailey ZS, Nilson E, Bates JA, Oyalowo A, Hockey KS, Sajja VSSS, et al. : Cerium oxide nanoparticles improve outcome after in vitro and in vivo mild traumatic brain injury. J Neurotrauma 37 : 1452-1462, 2020 https://doi.org/10.1089/neu.2016.4644
- Baldwin SA, Fugaccia I, Brown DR, Brown LV, Scheff SW : Blood-brain barrier breach following cortical contusion in the rat. J Neurosurg 85 : 476-481, 1996 https://doi.org/10.3171/jns.1996.85.3.0476
- Dall'Acqua P, Johannes S, Mica L, Simmen HP, Glaab R, Fandino J, et al. : Functional and structural network recovery after mild traumatic brain injury: a 1-year longitudinal study. Front Hum Neurosci 11 : 280, 2017
- Hamm RJ, Temple MD, Pike BR, Ellis EF : The effect of postinjury administration of polyethylene glycol-conjugated superoxide dismutase (pegorgotein, Dismutec) or lidocaine on behavioral function following fluid-percussion brain injury in rats. J Neurotrauma 13 : 325-332, 1996 https://doi.org/10.1089/neu.1996.13.325
- Jeong HG, Cha BG, Kang DW, Kim DY, Ki SK, Kim SI, et al. : Ceria nanoparticles synthesized with aminocaproic acid for the treatment of subarachnoid hemorrhage. Stroke 49 : 3030-3038, 2018. https://doi.org/10.1161/STROKEAHA.118.022631
- Kadry H, Noorani B, Cucullo L : A blood-brain barrier overview on structure, function, impairment, and biomarkers of integrity. Fluids Barriers CNS 17 : 69, 2020 https://doi.org/10.1186/s12987-020-00230-3
- Kaur P, Sharma S : Recent advances in pathophysiology of traumatic brain injury. Curr Neuropharmacol 16 : 1224-1238, 2018 https://doi.org/10.2174/1570159x15666170613083606
- Khatri N, Thakur M, Pareek V, Kumar S, Sharma S, Datusalia AK : Oxidative stress: major threat in traumatic brain injury. CNS Neurol Disord Drug Targets 17 : 689-695, 2018 https://doi.org/10.2174/1871527317666180627120501
- Kim CK, Kim T, Choi IY, Soh M, Kim D, Kim YJ, et al. : Ceria nanoparticles that can protect against ischemic stroke. Angew Chem Int Ed Engl 51 : 11039-11043, 2012 https://doi.org/10.1002/anie.201203780
- Maas AI, Murray G, Henney H 3rd, Kassem N, Legrand V, Mangelus M, et al. : Efficacy and safety of dexanabinol in severe traumatic brain injury: results of a phase III randomised, placebo-controlled, clinical trial. Lancet Neurol 5 : 38-45, 2006 https://doi.org/10.1016/S1474-4422(05)70253-2
- Marshall LF, Maas AI, Marshall SB, Bricolo A, Fearnside M, Iannotti F, et al. : A multicenter trial on the efficacy of using tirilazad mesylate in cases of head injury. J Neurosurg 89 : 519-525, 1998 https://doi.org/10.3171/jns.1998.89.4.0519
- Najem D, Rennie K, Ribecco-Lutkiewicz M, Ly D, Haukenfrers J, Liu Q, et al. : Traumatic brain injury: classification, models, and markers. Biochem Cell Biol 96 : 391-406, 2018 https://doi.org/10.1139/bcb-2016-0160
- Nance E, Zhang F, Mishra MK, Zhang Z, Kambhampati SP, Kannan RM, et al. : Nanoscale effects in dendrimer-mediated targeting of neuroinflammation. Biomaterials 101 : 96-107, 2016 https://doi.org/10.1016/j.biomaterials.2016.05.044
- Nelson BC, Johnson ME, Walker ML, Riley KR, Sims CM : Antioxidant cerium oxide nanoparticles in biology and medicine. Antioxidants (Basel) 5 : 15, 2016 https://doi.org/10.3390/antiox5020015
- Pan A, Zhu T, Wu HB, Lou XW : Template-free synthesis of hierarchical vanadium-glycolate hollow microspheres and their conversion to V2O5 with improved lithium storage capability. Chemistry 19 : 494-500, 2013 https://doi.org/10.1002/chem.201203596
- Rodriguez-Rodriguez A, Egea-Guerrero JJ, Murillo-Cabezas F, Carrillo-Vico A : Oxidative stress in traumatic brain injury. Curr Med Chem 21 : 1201-1211, 2014 https://doi.org/10.2174/0929867321666131217153310
- Rzigalinski BA, Meehan K, Davis RM, Xu Y, Miles WC, Cohen CA : Radical nanomedicine. Nanomedicine (Lond) 1 : 399-412, 2006 https://doi.org/10.2217/17435889.1.4.399
- Torrente-Murciano L, Gilbank A, Puertolas B, Garcia T, Solsona B, Chadwick D : Shape-dependency activity of nanostructured CeO2 in the total oxidation of polycyclic aromatic hydrocarbons. Appl Catal B 132-133 : 116-122, 2013 https://doi.org/10.1016/j.apcatb.2012.10.030
- Youn DH, Tran NM, Kim BJ, Kim Y, Jeon JP, Yoo H : Shape effect of cerium oxide nanoparticles on mild traumatic brain injury. Sci Rep 11 : 15571, 2021 https://doi.org/10.1038/s41598-021-95057-9
- Zavvari F, Nahavandi A, Shahbazi A : Neuroprotective effects of cerium oxide nanoparticles on experimental stress-induced depression in male rats. J Chem Neuroanat 106 : 101799, 2020 https://doi.org/10.1016/j.jchemneu.2020.101799
- Zhang M, Li J, Li H, Li Y, Shen W : Morphology-dependent redox and catalytic properties of CeO2 nanostructures: nanowires, nanorods and nanoparticles. Catal Today 148 : 179-183, 2009 https://doi.org/10.1016/j.cattod.2009.02.016
- Zhao Y, Luo P, Guo Q, Li S, Zhang L, Zhao M, et al. : Interactions between SIRT1 and MAPK/ERK regulate neuronal apoptosis induced by traumatic brain injury in vitro and in vivo. Exp Neurol 237 : 489-498, 2012 https://doi.org/10.1016/j.expneurol.2012.07.004
- Zhou K, Li Y : Catalysis based on nanocrystals with well-defined facets. Angew Chem Int Ed Engl 51 : 602-613, 2012 https://doi.org/10.1002/anie.201102619