DOI QR코드

DOI QR Code

A Calibration Method of the CSC Model for Considering Material Properties of Ultra-high Performance Concrete

초고성능 강섬유 보강 콘크리트 물성 반영을 위한 소성 기반 콘크리트 CSC 모델 보정기법

  • Gang-Kyu, Park (Department of Structural Engineering Research, Korea Institute of Civil Engineering and Building Technology) ;
  • MinJoo, Lee (Civil and Environmental Engineering, KAIST) ;
  • Sung-Wook, Kim (Department of Structural Engineering Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Hyun-Seop, Shin (Department of Structural Engineering Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Jae Heum, Moon (Department of Structural Engineering Research, Korea Institute of Civil Engineering and Building Technology)
  • 박강규 (한국건설기술연구원 구조연구본부 ) ;
  • 이민주 (한국과학기술원 건설및환경공학과) ;
  • 김성욱 (한국건설기술연구원 구조연구본부) ;
  • 신현섭 (한국건설기술연구원 구조연구본부 ) ;
  • 문재흠 (한국건설기술연구원 구조연구본부)
  • Received : 2022.10.31
  • Accepted : 2022.12.14
  • Published : 2022.12.30

Abstract

The present study introduces a calibration method of the CSC model implemented in the LS-DYNA program for considering the material properties of ultra-high performance concrete(UHPC). Based on previous experimental studies, various parameters, which constitute three shear failure surfaces, pressure-volumetric strain curve, fracture energy, dynamic increase factor(DIF), and so on, are modified. Then, the proposed calibration method is verified by comparing the numerical result with the experimental data through the single element analysis. In addition, based on the established finite element models, the applicability of the calibrated CSC model is examined for UHPC structures subjected to impact and blast loadings.

본 연구에서는 초고성능 강섬유 보강 콘크리트(UHPC)의 재료특성을 고려하기 위해 해석프로그램 LS-DYNA에 있는 CSC모델의 입력상수값 보정기법을 제안하였다. 1축 압축, 3축 압축, 압력-체적 변형률 곡선, 동적증가계수 등 이전 재료단위 실험 연구결과를 기반으로 입력상수값 보정을 수행하였다. 단일요소 해석결과를 실험결과와 비교하여 보정기법의 검증을 수행하였다. 또한, 유한요소모델을 구축하고 충격 및 폭발해석을 수행하여 UHPC 구조물 해석 수행 시 보정된 CSC 모델의 적용 가능성을 확인해보았다.

Keywords

Acknowledgement

본 연구는 과학기술정보통신부 한국건설기술연구원 연구운영비지원(주요사업)사업으로 수행되었습니다(과제번호 20220232-001, 수소도시 기반시설의 안전 및 수용성 확보기술 개발).

References

  1. Babanajad, S.K., Farnam, Y., Shekarchi, M. (2012). Failure criteria and triaxial behaviour of HPFRC containing high reactivity metakaolin and silica fume, Construction and Building Materials, 29, 215-229. https://doi.org/10.1016/j.conbuildmat.2011.08.094
  2. Benson, S.D.P., Karihaloo B.L. (2005). CARDIFRC - Development and mechanical properties. Part III: Uniaxial tensile response and other mechanical properties, Magazine of Concrete Research, 57(8), 433-443. https://doi.org/10.1680/macr.2005.57.8.433
  3. CEB-FIP (2010). CEB-FIP Model Code 2010, Comite EuroInternational Du Beton.
  4. Chen, W.F. (2007). Plasticity in Reinforced Concrete, J. Ross Publishing.
  5. Gholampour, A., Ozbakkaloglu, T. (2018). Fiber-reinforced concrete containing ultra high-strength micro steel fibers under active confinement, Construction and Building Materials, 187, 299-306. https://doi.org/10.1016/j.conbuildmat.2018.07.042
  6. Guo, W., Fan, W., Shao, X. (2018). Constitutive model of ultra-high-performance fiber-reinforced concrete for lowvelocity impact simulations, Composite Structures 185, 307-326. https://doi.org/10.1016/j.compstruct.2017.11.022
  7. Hassan, A.M.T., Jones, S.W., Mahmud, G.H. (2012). Experimental test methods to determine the uniaxial tensile and compressive behaviour of ultra high performance fibre reinforced concrete(UHPFRC), Construction and building materials, 37, 874-882. https://doi.org/10.1016/j.conbuildmat.2012.04.030
  8. Jia, P.C., Wu, H., Wang, R. (2021). Dynamic responses of reinforced ultra-high performance concrete members under low-velocity lateral impact, International Journal of Impact Engineering, 150, 103818.
  9. Jiang, H., Zhao, J. (2015). Calibration of the continuous surface cap model for concrete, Finite Elements in Analysis and Design, 97, 1-19. https://doi.org/10.1016/j.finel.2014.12.002
  10. Lai, J., Yang, H., Wang, H., Zheng, X., Wang, Q. (2018). Properties and modelling of ultra-high-performance concrete subjected to multiple bullet impacts, Journal of Materials in Civil Engineering, 30(10), 04018256.
  11. Lee, M.J. Kwak, H.G. (2021). Numerical simulations of blast responses for SFRC slabs using an orthotropic model, Engineering Structures, 238, 112150.
  12. Li, J., Wu, C., Hao, H., Wang, Z., Su, Y. (2016). Experimental investigation of ultra-high performance concrete slabs under contact explosions, International Journal of Impact Engineering, 93, 62-75. https://doi.org/10.1016/j.ijimpeng.2016.02.007
  13. Liu, J., Wu, C., Su, Y. (2018). Experimental and numerical studies of ultra-high performance concrete targets against high-velocity projectile impacts, Engineering Structures, 173, 166-179. https://doi.org/10.1016/j.engstruct.2018.06.098
  14. Manfred, C., Speck, K. (2008). Ultra high performance concrete under biaxial compression, Proceedings of the Second International Symposium on Ultra High Performance Concrete, Kassel, Germany, 477-484.
  15. Murray, Y. (2007). Users Manual for LS-DYNA Concrete Material Model 159, Federal Highway Administration.
  16. Naeimi, N., Moustafa, M.A. (2021). Compressive behavior and stress -strain relationships of confined and unconfined UHPC, Construction and Building Materials, 272, 121844.
  17. Park, J.K., Kim, S.W., Kim, D.J. (2017). Matrix-strength-dependent strain-rate sensitivity of strain-hardening fiber-reinforced cementitious composites under tensile impact, Composite Structures 162, 313-324.
  18. Peng, Y., Wu, H., Fang, Q. (2016). Residual velocities of projectiles after normally perforating the thin ultra-high performance steel fiber reinforced concrete slabs, International Journal of Impact Engineering, 97, 1-9. https://doi.org/10.1016/j.ijimpeng.2016.06.006
  19. Prabha, S.L., Dattatreya, J.K., Neelamegam, M., Seshagirirao, M.V. (2010). Study on stress-strain properties of reactive powder concrete under uniaxial compression, International Journal of Engineering Science and Technology, 2(11), 6408-6416.
  20. Rao, B., Chen, L., Fang, Q., Hong, J., Liu, Z.X., Xiang, H.B. (2018). Dynamic responses of reinforced concrete beams under double-end-initiated close-in explosion, Defence Technology, 14(5), 527-539. https://doi.org/10.1016/j.dt.2018.07.024
  21. Ren, G.M., Wu, H., Fang, Q., Liu, J.Z. (2018). Effects of steel fiber content and type on static mechanical properties of UHPCC, Construction and Building Materials, 163, 826-839. https://doi.org/10.1016/j.conbuildmat.2017.12.184
  22. Ren, G.M., Wu, H., Fang, Q., Liu, J.Z., Gong, Z.M. (2016). Triaxial compressive behavior of UHPCC and applications in the projectile impact analyses, Construction and Building Materials, 113, 1-14. https://doi.org/10.1016/j.conbuildmat.2016.02.227
  23. Saini, D., Oppong, K., Shafei, B. (2021). Investigation of concrete constitutive models for ultra-high performance fiber-reinforced concrete under low-velocity impact, International Journal of Impact Engineering, 157, 103969.
  24. Scott, D.A., Graham, S.S., Songer, B.P., Green, B.H., Grotke, M.J., Brogdon, T.N. (2021). Laboratory Characterization of Cor-Tuf Baseline and UHPC-S, Geotechnical and Structures Laboratory, Engineer Research and Development Center, US Army Corps of Engineers, U.S.
  25. Sirijaroonchai, K., El-Tawil, S., Parra-Montesinos, G. (2010). Behavior of high performance fiber reinforced cement composites under multi-axial compressive loading, Cement and Concrete Composites, 32(1), 62-72. https://doi.org/10.1016/j.cemconcomp.2009.09.003
  26. Thai D.K., Kim, S.E. (2018) Numerical investigation of the damage of RC members subjected to blast loading, Engineering Failure Analysis, 92, 350-367.
  27. Tran, T.K., Kim, D.J. (2013). Investigating direct tensile behavior of high performance fiber reinforced cementitious composites at high strain rates, Cement and Concrete Research, 50, 62-73. https://doi.org/10.1016/j.cemconres.2013.03.018
  28. Tran, T.K., Kim, D.J. (2014). High strain rate effects on direct tensile behavior of high performance fiber reinforced cementitious composites, Cement and Concrete Composites, 45, 186-200. https://doi.org/10.1016/j.cemconcomp.2013.10.005
  29. Tufekci, M.M., Gokce, A. (2017). Development of heavyweight high performance fiber reinforced cementitious composites(HPFRCC) - Part I: Mechanical properties, Construction and Building Materials, 148, 559-570.
  30. Wang, Y.Z., Wang, Y.B., Zhao, Y.Z. (2020). Experimental study on ultra-high performance concrete under triaxial compression, Construction and Building Materials, 263, 120225.
  31. Williams, E.M., Graham, S.S., Reed, P.A., Rushing, T.S. (2009). Laboratory Characterization of Cor-Tuf Concrete with and without Steel Fibers, Geotechnical and Structures Laboratory, Engineer Research and Development Center, US Army Corps of Engineers, U.S.
  32. Winkelbauer, B.J. (2016). Phase I Evaluation of Selected Concrete Material in LS-DYNA. University of Nebraska. University of Nebraska-Lincoln, U.S.
  33. Wu, Y., Crawford, J.E., Magallanes, J.M. (2012). Performance of LS-DYNA concrete constitutive models, 12th International LS-DYNA Users conference, 1, 1-14.
  34. Wu, Z., Shi, C., He, W., Wang, D. (2017). Static and dynamic compressive properties of ultra-high performance concrete (UHPC) with hybrid steel fiber reinforcements, Cement and Concrete Composites, 79, 148-157. https://doi.org/10.1016/j.cemconcomp.2017.02.010
  35. Xu, S., Wu, P., Liu, Z. (2021). Calibration of CSCM model for numerical modeling of UHPCFTWST columns against monotonic lateral loading, Engineering Structures, 240, 112396.
  36. Yoo, D.Y., Kim, S.W., Park, J.J. (2017). Comparative flexural behavior of ultra-high-performance concrete reinforced with hybrid straight steel fibers, Construction and Building Materials, 132, 219-229. https://doi.org/10.1016/j.conbuildmat.2016.11.104