• Title/Summary/Keyword: Calibration method

Search Result 2,834, Processing Time 0.027 seconds

Effects of the in-process calibration from IR detector for thermal diffusivity measurement by laser flash method (레이저 섬광법에 의한 열확산계수 측정시 적외검출소자에서 실시간 온도보정이 미치는 영향)

  • 이원식;배신철
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.6
    • /
    • pp.795-802
    • /
    • 1998
  • For measuring the thermal diffusivity by laser flash method, raw data have to be calibrated using temperature data. We have developed in-process calibration method and polynomial calibration in which thermal diffusivity can be calibrated during measuring, This method is different from existing temperature pre-process calibration method and exponential calibration having various source of error. Using this new calibration method, measurement accuracy was improved about 1∼2% compare to the value by the existing method. We also studied more accurate fitting curve as in Figure 4 was shown the result of measuring output characteristics of IR radiometer with temperature. As illustrated in data, in-process calibration method and polynomial calibration equation is proper than pre-process calibration method and exponential calibration.

  • PDF

In-Process Relative Robot WorkCell Calibration

  • Wang, Jianjun;Sun, Yunquan;Gan, zhongxue
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.269-272
    • /
    • 2003
  • Industry is now seeing a dramatic increase in robot simulation and off-line programming. In order to use off-line programming effectively, the simulated workcell has to be identical to the real workcell. This requires an efficient and accurate method for the workcell calibration. Currently used techniques in the industry, however, are typically time-consuming, expensive and therefore not suitable for in-process application. This is because most of these techniques are based on the so-called “absolute calibration” method. In contrast to absolute method, relative calibration only measures the difference of an interested object relative to a standard reference. Owing to the small measurement range requirement, relative calibration method is very cheap and can achieve very high accuracy. In this paper the relative method is applied to calibrate an entire grinding workcell. Linear gauge is the only measurement device used. This workcell calibration includes tool center point (TCP) calibration and work object frame calibration. Due to the efficiency of the calibration algorithm and the simplicity of the calibration setup, the described calibration procedure can be done in process.

  • PDF

A Study on the SDINS's Gyro Bias Calibration Method in Disturbances (외란을 고려한 스트랩다운 관성항법장치 자이로 바이어스 교정기법)

  • Lee, Youn-Seon;Lee, Sang-Jeong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.12 no.3
    • /
    • pp.368-377
    • /
    • 2009
  • In this paper we study the gyro bias calibration method of SDINS(Strap-Down Inertial Navigation System). Generally, SDINS's calibration is performed in 2-axis(or 3-axis) rate table with chamber for varying ambient temperature. We assumed that the majority of calibration-parameter except for gyro bias is knowned. During gyrobias calibration procedure, it can be induced some disturbances(accelerometer's short-term error induced rate table rotation and anti-vibration mount's rotation). In these cases, old gyro-bias calibration methods(using velocity error or attitude error) have an error, because these disturbances are not detectable at the same time. So that, we propose a new gyro-bias calibration method(heading error minimizing using equivalent linear transformation) that can detect anti-vibration mount's rotation. And we confirm efficiency of the new gyro-bias calibration method by simulation.

Detection of Calibration Patterns for Camera Calibration with Irregular Lighting and Complicated Backgrounds

  • Kang, Dong-Joong;Ha, Jong-Eun;Jeong, Mun-Ho
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.5
    • /
    • pp.746-754
    • /
    • 2008
  • This paper proposes a method to detect calibration patterns for accurate camera calibration under complicated backgrounds and uneven lighting conditions of industrial fields. Required to measure object dimensions, the preprocessing of camera calibration must be able to extract calibration points from a calibration pattern. However, industrial fields for visual inspection rarely provide the proper lighting conditions for camera calibration of a measurement system. In this paper, a probabilistic criterion is proposed to detect a local set of calibration points, which would guide the extraction of other calibration points in a cluttered background under irregular lighting conditions. If only a local part of the calibration pattern can be seen, input data can be extracted for camera calibration. In an experiment using real images, we verified that the method can be applied to camera calibration for poor quality images obtained under uneven illumination and cluttered background.

Camera Calibration And Lens of Distortion Model Constitution for Using Artificial Neural Networks (신경망을 이용한 렌즈의 왜곡모델 구성 및 카메라 보정)

  • Kim, Min-Suk;Nam, Chang-Woo;Woo, Dong-Min
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.2923-2925
    • /
    • 1999
  • The objective of camera calibration is to determine the internal optical characteristics of camera and 3D position and orientation of camera with respect to the real world. Calibration procedure applicable to general purpose cameras and lenses. The general method to revise the accuracy rate of calibration is using mathematical distortion of lens. The effective og calibration show big difference in proportion to distortion of camera lens. In this paper, we propose the method which calibration distortion model by using neural network. The neural network model implicity contains all the distortion model. We can predict the high accuracy of calibration method proposed in this paper. Neural network can set properly the distortion model which has difficulty to estimate exactly in general method. The performance of the proposed neural network approach is compared with the well-known Tsai's two stage method in terms of calibration errors. The results show that the proposed approach gives much more stable and acceptabke calibration error over Tsai's two stage method regardless of camera resolution and camera angle.

  • PDF

An Improved Fast Camera Calibration Method for Mobile Terminals

  • Guan, Fang-li;Xu, Ai-jun;Jiang, Guang-yu
    • Journal of Information Processing Systems
    • /
    • v.15 no.5
    • /
    • pp.1082-1095
    • /
    • 2019
  • Camera calibration is an important part of machine vision and close-range photogrammetry. Since current calibration methods fail to obtain ideal internal and external camera parameters with limited computing resources on mobile terminals efficiently, this paper proposes an improved fast camera calibration method for mobile terminals. Based on traditional camera calibration method, the new method introduces two-order radial distortion and tangential distortion models to establish the camera model with nonlinear distortion items. Meanwhile, the nonlinear least square L-M algorithm is used to optimize parameters iteration, the new method can quickly obtain high-precise internal and external camera parameters. The experimental results show that the new method improves the efficiency and precision of camera calibration. Terminals simulation experiment on PC indicates that the time consuming of parameter iteration reduced from 0.220 seconds to 0.063 seconds (0.234 seconds on mobile terminals) and the average reprojection error reduced from 0.25 pixel to 0.15 pixel. Therefore, the new method is an ideal mobile terminals camera calibration method which can expand the application range of 3D reconstruction and close-range photogrammetry technology on mobile terminals.

Novel Calibration Method for the Multi-Camera Measurement System

  • Wang, Xinlei
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.6
    • /
    • pp.746-752
    • /
    • 2014
  • In a multi-camera measurement system, the determination of the external parameters is one of the vital tasks, referred to as the calibration of the system. In this paper, a new geometrical calibration method, which is based on the theory of the vanishing line, is proposed. Using a planar target with three equally spaced parallel lines, the normal vector of the target plane can be confirmed easily in every camera coordinate system of the measurement system. By moving the target into more than two different positions, the rotation matrix can be determined from related theory, i.e., the expression of the same vector in different coordinate systems. Moreover, the translation matrix can be derived from the known distance between the adjacent parallel lines. In this paper, the main factors effecting the calibration are analyzed. Simulations show that the proposed method achieves robustness and accuracy. Experimental results show that the calibration can reach 1.25 mm with the range about 0.5m. Furthermore, this calibration method also can be used for auto-calibration of the multi-camera mefasurement system as the feature of parallels exists widely.

A Study on the Camera Calibration Using Lens Distortion Model (렌즈의 왜곡 모델을 이용한 카메라 보정에 관한 연구)

  • Dong Min Woo
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.2
    • /
    • pp.56-68
    • /
    • 1994
  • The objective of camera calibration is to determine the internal optical characteristics of camera and the three-dimensional position and orientation of camera with respect to the real world. Calibration procedure for computer vision should be automatical, accurate and applicable to general purpose cameras and lenses. In this paper, we present camera calibration method which meets the above requirements. The algorithm is based on the two-stage method which takes into account lens distortion in the second stage. In this paper, the overdetermined nonlinear system is established in terms of the constraints to all directions and our calibration algorithm is proposed which is constructed by using Marquardt iterations and our calibration algorithm is proposed which is constructed by using Marquardt iteration method in solving nonlinear equations. Experimental results indicate that lens distortion should be taken into consideration for the calibration of the general-purpose lens. With 24 calibration points acquired out of 512$\times$512 image, the proposed algorithm came up with average error of less than 1 pixel and showed a higher accuracy over the conventional two-stage method.

  • PDF

Nacelle-Mounted Lidar Beam Line of Sight (LOS) Wind Speed Calibration Procedure Using Meteorological Mast (기상탑을 이용한 나셀 거치형 라이다 빔의 LOS(Line of Sight) 풍속 교정절차)

  • Ryu, Dong-Hun;Lee, Min-Soo;Lim, Chae-Wook;Ko, Kyung-Nam;Shin, Dong-Heon;Kang, Bo-Sin;Kim, Dong-Wan
    • Journal of Wind Energy
    • /
    • v.9 no.4
    • /
    • pp.24-31
    • /
    • 2018
  • Wind lidar application is increasing and its calibration method is required to use wind lidar as an alternative to the meteorological mast. A nacelle lidar calibration method is now being discussed in IEC 61400-50-3 (Wind energy generation systems - Part 50-3: Use of nacelle-mounted lidars for wind measurements), and the method is mainly based on the wind lidar beam line of sight (LOS) wind speed calibration suggested by DTU as DTU E-0020 (Calibrating Nacelle Lidars). In this paper, a LOS wind speed calibration method is introduced and a calibration example performed on Jeju island is presented. The results showed a slope of 1.011 and R2 of 0.997, which means that the LOS wind speed is highly correlated with the reference wind speed and is comparable. But LOS wind speed calibration requires a very long time due to its principle and environmental conditions, and a calibration method that can overcome this problem of uncontrollable environments needs to be developed.

Effect of Contact Stiffness on Lateral Force Calibration of Atomic Force Microscopy Cantilever (원자 현미경 탐침의 수평방향 힘 교정에 미치는 접촉 강성의 영향)

  • Tran, Da Khoa;Jeon, Ki-Joon;Chung, Koo-Hyun
    • Tribology and Lubricants
    • /
    • v.28 no.6
    • /
    • pp.289-296
    • /
    • 2012
  • Atomic force microscopy (AFM) has been used for imaging surfaces and measuring surface forces at the nano-scale. Force calibration is important for the quantitative measurement of forces at the nano-scale using AFM. Normal force calibration is relatively straightforward, whereas the lateral force calibration is more complicated since the lateral stiffness of the cantilever is often comparable to the contact stiffness. In this work, the lateral force calibrations of the rectangular cantilever were performed using torsional Sader's method, thermal noise method, and wedge calibration method. The lateral optical lever sensitivity for the thermal noise method was determined from the friction loop under various normal forces as well. Experimental results showed that the discrepancies among the results of the different methods were as large as 30% due to the effect of the contact stiffness on the lateral force calibration of the cantilever used in this work. After correction for the effect of contact stiffness, all the calibration results agreed with each other, within experimental uncertainties.