Acknowledgement
본 연구는 2020년도 산업자원통상부의 재원으로 에너지기술개발사업의 지원을 받아 수행한 연구 과제입니다(과제번호: 20206900000020, 20203040010240).
References
- J.K. Lee and G.C. Park, "Battery protection method using gas sensor monitoring device", Trans Korean Hydrogen New Energy Soc, Vol. 32, No. 2, 2021, pp. 143-148. doi: https://doi.org/10.7316/KHNES.2021.32.2.143.
- C.H. Sim and H.S. Kim, "Basic investigation into the validity of thermal analysis of 18650 Li-ion battery pack using CFD Simulation'', Trans Korean Hydrogen New Energy Soc, Vol. 31, No. 5, 2020, pp. 489-497. doi: https://doi.org/10.7316/KHNES.2020.31.5.489.
- Z. Liao, S. Zhang, K. Li, G. Zhang, and T.G. Habetler, "A survey of methods for monitoring and detecting thermal runaway of lithium-ion batteries", J. Power Sources, Vol. 436, 2019, pp. 226879, doi: https://doi.org/10.1016/j.jpowsour.2019.226879.
- C. Xu, X. Feng, W. Huang, Y. Duan, T. Chen, S. Gao, L. Lu, F. Jiang, and M. Ouyang, "Internal temperature detection of thermal runaway in lithium-ion cells tested by extended-volume accelerating rate calorimetry", J. Energy Storage, Vol. 31, 2020, pp. 101670, doi: https://doi.org/10.1016/j.est.2020.101670.
- D. Ren, X. Liu, X. Feng, L. Lu, M. Ouyang, J. Li, and X. He, "Mode-based thermal runaway prediction of lithium-ion batteries from kinetics analysis of cell components", Appl. Energy, Vol. 228, 2018, pp. 633-644, doi: https://doi.org/10.1016/j.apenergy.2018.06.126.
- X. Feng, J. Sun, M. Ouyang, X. He, L. Lu, X. Han, M. Fang, and H. Peng, "Characterization of large format lithium ion battery exposed to extremely high temperature", J. Power Sources, Vol. 272, 2014, pp. 457-467, doi: https://doi.org/10.1016/j.jpowsour.2014.08.094.
- H. Yang, H. Bang, K. Amine, and J. Prakash, "Investigations of the exothermic reactions of natural graphite anode for Li-Ion batteries during thermal runaway", J. Electrochem. Soc, Vol. 152, No. 1, 2005, pp. A73-A79, doi: https://doi.org/10.1149/1.1836126.
- J. ichi Yamaki, H. Takatsuji, T. Kawamura, and M. Egashira, "Thermal stability of graphite anode with electrolyte in lithium-ion cells", Solid State Ionics, Vol. 148, No. 3, 2002, pp. 241-245, doi: https://doi.org/10.1016/S0167-2738(02)00060-7.
- I. Belharouak, D. Vissers, and K. Amine, "Thermal stability of the Li (Ni0.8Co0.15Al0.05) O2 cathode in the presence of cell components", J. Electrochem. Soc, Vol. 153, No. 11, 2006, pp. A2030-A2035, doi: https://doi.org/10.1149/1.2336994.
- T. Inoue and K. Mukai, "Roles of positive or negative electrodes in the thermal runaway of lithium-ion batteries: Accelerating rate calorimetry analyses with an all-inclusive microcell", Electrochem. Commun, Vol. 77, 2017, pp. 28-31, doi: https://doi.org/10.1016/j.elecom.2017.02.008.
- P. Huang, Q. Wang, K. Li, P. Ping, and J. Sun, "The combustion behavior of large scale lithium titanate battery", Sci. Rep, Vol. 5, 2015, pp. 1-12, doi: https://doi.org/10.1038/srep07788.
- R. Guo, L. Lu, M. Ouyang, and X. Feng, "Mechanism of the entire overdischarge process and overdischarge-induced internal short circuit in lithium-ion batteries", Sci. Rep, Vol. 6, 2016, pp. 1-9, doi: https://doi.org/10.1038/srep30248.
- K. Xu, G. V. Zhuang, J. L. Allen, U. Lee, S. S. Zhang, P.N. Ross, and T.R. Jow, "Syntheses and characterization of lithium alkyl mono- and bicarbonates as components of surface films in Li-ion batteries", J. Phys. Chem. B, Vol. 110, No. 15, 2006, pp. 7708-7719, doi: https://doi.org/10.1021/jp0601522.
- Q. Wang, P. Ping, X. Zhao, G. Chu, J. Sun, and C. Chen, "Thermal runaway caused fire and explosion of lithium ion battery", J. Power Sources, Vol. 208, 2012, pp. 210-224, doi: https://doi.org/10.1016/j.jpowsour.2012.02.038.
- R. Spotnitz and J. Franklin, "Abuse behavior of high-power, lithium-ion cells", J. Power Sources, Vol. 113, No. 1, 2003, pp. 81-100, doi: https://doi.org/10.1016/S0378-7753(02)00488-3.
- Q. Wang and J. Sun, "Enhancing the safety of lithium ion batteries by 4-isopropyl phenyl diphenyl phosphate", Mater. Lett, Vol. 61, No. 16, 2007, pp. 3338-3340, doi: https://doi.org/10.1016/j.matlet.2006.11.060.
- J. Yamaki, Y. Baba, N. Katayama, H. Takatsuji, M. Egashira, and S. Okada, "Thermal stability of electrolytes with LixCoO2 cathode or lithiated carbon anode", J. Power Sources, Vol. 119-121, 2003, pp. 789-793. doi: https://doi.org/10.1016/S0378-7753(03)00254-4.
- Q. Wang, J. Sun, X. Yao, and C. Chen, "Thermal behavior of lithiated graphite with electrolyte in lithium-ion batteries", J. Electrochem. Soc, Vol. 153, 2006, pp. A329-A333, doi: https://doi.org/10.1149/1.2139955.
- J. S. Gnanaraj, E. Zinigrad, L. Asraf, H. E. Gottlieb, M. Sprecher, D. Aurbach, and M. Schmidt, "The use of accelerating rate calorimetry (ARC) for the study of the thermal reactions of Li-ion battery electrolyte solutions", J. Power Sources, Vol. 119-121, 2003, pp. 794-798, doi: https://doi.org/10.1016/S0378-7753(03)00255-6.