DOI QR코드

DOI QR Code

Group Orders That Imply a Nontrivial p-Core

  • 투고 : 2021.10.19
  • 심사 : 2022.02.09
  • 발행 : 2022.12.31

초록

Given a prime number p and a natural number m not divisible by p, we propose the problem of finding the smallest number r0 such that for r ≥ r0, every group G of order prm has a non-trivial normal p-subgroup. We prove that we can explicitly calculate the number r0 in the case where every group of order prm is solvable for all r, and we obtain the value of r0 for a case where m is a product of two primes.

키워드

과제정보

This work was partially supported by CONACYT, grant A1-S-45528.

참고문헌

  1. R. Brauer, On simple groups of order 5 . 3a . 2b, Bull. Amer. Math. Soc., 74(1968), 900-903. https://doi.org/10.1090/S0002-9904-1968-12073-7
  2. D. Gorenstein, Finite groups, Chelsea Publishing Co., New York(1980).
  3. D. Quillen, Homotopy properties of the poset of nontrivial p-subgroups of a group, Adv. in Math., 28(2)(1987), 101-128. https://doi.org/10.1016/0001-8708(78)90058-0
  4. J. S. Rose, A course on group theory, Dover Publications Inc., New York(1994).
  5. P. J. Webb, Subgroup complexes, Proc. Sympos. Pure Math., 47(1)(1987).