## Group Orders That Imply a Nontrivial $p$-Core

Rafael Villarroel-Flores<br>Universidad Autonoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo km. 4. 5, Pachuca 42184 Hgo., Mexico<br>e-mail : rafaelv@uaeh.edu.mx

Abstract. Given a prime number $p$ and a natural number $m$ not divisible by $p$, we propose the problem of finding the smallest number $r_{0}$ such that for $r \geq r_{0}$, every group $G$ of order $p^{r} m$ has a non-trivial normal $p$-subgroup. We prove that we can explicitly calculate the number $r_{0}$ in the case where every group of order $p^{r} m$ is solvable for all $r$, and we obtain the value of $r_{0}$ for a case where $m$ is a product of two primes.

## 1. Introduction

Throughout this note, $p$ will be a fixed prime number. We use $O_{p}(G)$ to denote the $p$-core of $G$, that is, its largest normal $p$-subgroup.

We propose the following optimization problem: Given a number $m$ not divisible by $p$, find the smallest $r_{0}$ such that every group having order $n=p^{r} m$, with $r \geq r_{0}$, has a nontrivial $p$-core $O_{p}(G)$. Denote such number $r_{0}$ by $\Lambda(p, m)$. In Theorem 2.1, we will prove that $\Lambda(p, m)$ is well-defined for any prime $p$ and number $m$ (with $p \nmid m)$. In Theorem 2.3 we explicitly determine the value of $\Lambda(p, m)$ in the case that all groups whose order have the form $p^{r} m$ are solvable (for example, if $m$ is prime or if both $p$ and $m$ are odd). Finally, in Section 3, we calculate $\Lambda(2,15)$, a case that is not covered by the previous theorem.

We remark that the motivation for this research came from the search for examples of finite groups $G$ such that the Brown complex $\mathcal{S}_{p}(G)$ of nontrivial $p$-subgroups of $G$ (see for example [5] for the definition and properties) is connected but not contractible. It is known that $\mathcal{S}_{p}(G)$ is contractible when $G$ has a nontrivial normal $p$-subgroup, and Quillen conjectured in [3] that the converse is also true.

## 2. Theorems

Theorem 2.1. For any prime number $p$ and natural number $m$ such that $p \nmid m$,

Received October 19, 2021; revised January 25, 2022; accepted February 9, 2022.
2020 Mathematics Subject Classification: 20D20, 20D60.
Key words and phrases: p-core, normal subgroups.
This work was partially supported by CONACYT, grant A1-S-45528.
there is a number $\Lambda(p, m)$ such that if $r \geq \Lambda(p, m)$, any group of order $p^{r} m$ has a non-trivial $p$-core $O_{p}(G)$.
Proof. Let $G$ be a group of order $p^{r} m$ with $O_{p}(G)=1$. Let $P$ be a Sylow $p$-subgroup of $G$. Since the kernel of the action of $G$ on the set of cosets of $P$ is precisely $O_{p}(G)$, we obtain that $G$ embeds in $S_{m}$, and so $p^{r}$ divides $(m-1)!$. Hence, if $p^{r_{0}}$ is the largest power of $p$ dividing $\left((\mathrm{m}-1)\right.$ !), we obtain that $\Lambda(p, m) \leq r_{0}+1$.

For $t, q$ natural numbers, let $\gamma(t, q)$ be the product

$$
\begin{equation*}
\gamma(t, q)=\left(q^{t}-1\right)\left(q^{t-1}-1\right) \cdots\left(q^{2}-1\right)(q-1) \tag{2.1}
\end{equation*}
$$

(note that $\gamma(t, q)$ can also be defined as $(t)!_{q}(q-1)$ !, where $(t)!_{q}$ is the $q$-factorial of $t$ ), and if $m=q_{1}^{t_{1}} q_{2}^{t_{2}} \cdots q_{k}^{t_{k}}$ is a prime factorization of $m$, with the $q_{i}$ pairwise distinct and $t_{i}>0$ for each $i$, we let $\Gamma(m)=\gamma\left(t_{1}, q_{1}\right) \cdots \gamma\left(t_{k}, q_{k}\right)$. We prove that if $p^{s_{0}}$ is the largest power of $p$ dividing $\Gamma(m)$, then $\Lambda(p, m) \geq s_{0}+1$.

Theorem 2.2. Let $n=p^{s} m$ where $p \nmid m$ and $s>0$. If $p^{s} \mid \Gamma(m)$, then there is $a$ group of order $n$ with $O_{p}(G)=1$.
Proof. Let $K$ be the group $C_{q_{1}}^{t_{1}} \times \cdots \times C_{q_{k}}^{t_{k}}$, that is, a product of elementary abelian groups, where $m=q_{1}^{t_{1}} \cdots q_{k}^{t_{k}}$ and $q_{1}, \ldots, q_{k}$ are distinct primes and $C_{q}$ denotes the cyclic group of order $q$. Then $\Gamma(m)$ divides the order of Aut $(K)$, and hence so does $p^{s}$. Let $H$ be a subgroup of $\operatorname{Aut}(K)$ of order $p^{s}$. For every $S \in H$ and $k \in K$ define the map $T_{S, k}: K \rightarrow K$ by $T_{S, k}(x)=S x+k$. Then $G=\left\{T_{S, k} \mid S \in H, k \in K\right\}$ is a subgroup of $\operatorname{Sym}(K)$. If we identify $H$ with the subgroup of maps of the form $T_{S, 0}$ and $K$ with the subgroup of maps of the form $T_{1_{K}, k}$, then $G$ is just the semidirect product of $K$ by $H$. Hence $|G|=n$. We have that $G$ acts transitively on $K$ in a natural fashion, and the stabilizer of $0 \in K$ is $H$, a $p$-Sylow subgroup of $G$. Hence the stabilizers of points in $K$ are precisely the Sylow subgroups of $G$, so their intersection $O_{p}(G)$ contains only the identity $K \rightarrow K$, as we wanted to prove.

The next theorem will show that the lower bound given by Theorem 2.2 is tight in some cases.

Theorem 2.3. Let $n=p^{s} m$, where $p \nmid m$. If $G$ is a group of order $n$ and $p^{s}$ does not divide $\Gamma(m)$ then either:

1. $\left(O_{p}(G) \neq 1\right)$, or
2. $G$ is not solvable.

Proof. Let $G$ be solvable with order $n=p^{s} m$ and $O_{p}(G)=1$. Let $F(G)$ be the Fitting subgroup of $G$. Consider the map $c: G \rightarrow \operatorname{AutF}(G)$, sending $g$ to $c_{g}: F(G) \rightarrow$ $F(G)$ given by conjugation by $g$. The restriction of $c$ to $P$, a $p$-Sylow subgroup of $G$, has kernel $P \cap C_{G}(F(G))$. Since $C_{G}(F(G)) \leq F(G)$ (Theorem 7.67 from [4]), and $F(G)$ does not contain elements of order $p$ by our assumption on $O_{p}(G)$, we have $P \cap C_{G}(F(G))=1$ and so $P$ acts faithfully on $F(G)$. If $m=q_{1}^{t_{1}} \cdots q_{k}^{t_{k}}$ is the prime factorization of $m$, we have that $F(G)$ is the direct product of the $O_{q_{i}}(G)$
for $i=1, \cdots, k$. Hence $P \leq \operatorname{Aut}(F(G)) \cong \operatorname{Aut}\left(O_{q_{1}}(G)\right) \times \cdots \times \operatorname{Aut}\left(O_{q_{k}}(G)\right)$. Let $g \in P$ such that the action induced by $c_{g}$ on $\prod_{i} O_{q_{i}}(G) / \Phi\left(O_{q_{i}}(G)\right)$, is the identity. Since $c_{g}$ acts on each factor $O_{q_{i}}(G) / \Phi\left(O_{q_{i}}(G)\right)$ as the identity, then by Theorem 5.1.4 from [2], we have that it acts as the identity on each $O_{q_{i}}(G)$. By the faithful action of $P$ on $F(G)$, we have that $g=1$. This implies that $P$ acts faithfully on $\prod_{i} O_{q_{i}}(G) / \Phi\left(O_{q_{i}}(G)\right)$. But then $|P|$ divides the order of the automorphism group of $\prod_{i} O_{q_{i}}(G) / \Phi\left(O_{q_{i}}(G)\right)$, which is a product of elementary abelian groups of respective orders $q_{i}^{s_{i}}$ with $s_{i} \leq t_{i}$ for all $i$. Hence $p^{s}=|P| \operatorname{divides} \Gamma(m)$

Corollary 2.4. Let $p^{s}$ be the largest power of $p$ that divides $\Gamma(m)$. If $m$ is prime, or if both $p, m$ are odd, then $\Lambda(p, m)=s+1$.
Proof. By Burnside's $p, q$-theorem, and the Odd Order Theorem, we have that all groups that have order of the form $p^{r} m$ for some $r$ are solvable. Therefore, for all $r>s$, by Theorem 2.3 we have that all groups of order $p^{r} m$ have non-trivial $p$-core.

At this moment, we can prove that in some cases, the group constructed in 2.2 is unique.
Theorem 2.5. Let $n=p^{s} m$ where $p \nmid m$ and $s>0$. If $p^{s} \mid \Gamma(m)$, but $p^{s} \nmid \Gamma\left(m^{\prime}\right)$ for all proper divisors $m^{\prime}$ of $m$, then up to isomorphism, the group constructed in the proof of Theorem 2.2 is the only solvable group of order $n$ with $O_{p}(G)=1$.
Proof. With the notation of the argument of the proof of 2.3, if $G$ is a solvable group of order $n$ with $O_{p}(G)=1$, we must have that $\left|O_{q_{i}}(G)\right|=q_{i}^{t_{i}}$ and $\Phi\left(O_{q_{i}}(G)\right)=1$ for all $i$ in order to satisfy the divisibility conditions. Hence $O_{q_{i}}(G)$ is elementary abelian and a $q_{i}$-Sylow subgroup for all $i$, and so $G$ is the semidirect product of a $p$-Sylow subgroup $P$ of $F(G)=C_{q_{1}}^{t_{1}} \times \cdots \times C_{q_{k}}^{t_{k}}$ with $F(G)$, where the action of $P$ on $F(G)$ by conjugation is faithful. Hence $G$ is isomorphic to the group constructed in the proof of Theorem 2.3.

One case in that we may apply Theorem 2.5 is when $n=864$. There are 4725 groups of order $864=2^{5} 3^{3}$, but only one of them has the property of having a trivial 2-core.

## 3. An Example

An example that cannot be tackled with the previous results is the case $p=2$, $m=3 \cdot 5=15$. In this case, $\Gamma(15)=(3-1)(5-1)=2^{3}$. Not all groups with order of the form $2^{r} \cdot 3 \cdot 5$ are solvable, however, we will prove that $\Lambda(2,15)$ is actually 4 . (The group $S_{5}$ attests that $\Lambda(2,15)>3$.)

Theorem 3.1. Every group $G$ of order $2^{r} \cdot 3 \cdot 5$ for $r \geq 4$ is such that $O_{2}(G) \neq 1$.
Proof. Let $G$ be a group of order $2^{r} \cdot 3 \cdot 5$ for $r \geq 4$. Suppose that $O_{2}(G)=1$. From Theorem 2.3, we obtain that $G$ is not solvable. We will prove then that $O_{3}(G)=1$. Suppose otherwise, and let $T=O_{3}(G)$. Then $|G / T|=2^{r} \cdot 5$, and so $G / T$ is solvable. Since $2^{r} \nmid \Gamma(5)$, from Theorem 2.3, we have that $O_{2}(G / T) \neq 1$. Let $L \triangleleft G$ such that $O_{2}(G / T)=L / T$. Suppose $|L / T|=2^{j}$. Since $O_{2}(G / L)=1$, $|G / L|=2^{r-j} .5$ and $G / L$ is solvable, we have that $2^{r-j}$ divides $\Gamma(5)=2^{2}$, that is, $r-j \leq 2$. Now, $L$ is also solvable and $\Gamma(3)=3-1=2$, hence if we had $j \geq 2$ we would have $O_{2}(L) \neq 1$, and $G$ would have a non-trivial subnormal 2-subgroup, which contradicts our assumption that $O_{2}(G)=1$. Hence $j=1$. But then $r-1 \leq 2$, which contradicts that $r \geq 4$. Hence $O_{3}(G)=1$. By a similar argument, we get that $O_{5}(G)=1$.

From [1] we obtain that $G$ is not simple. Hence $G$ has a proper minimal normal subgroup $M$. From the previous paragraph, we obtain that $M$ is not abelian, since in that case we would have that $M \leq F(G)$. The only possibility is that $M=A_{5}$. We have then a morphism $c: G \rightarrow \operatorname{Aut}\left(A_{5}\right)$ sending $g$ to $c_{g}$, the conjugation by $g$. Since $\operatorname{Aut}\left(A_{5}\right)=S_{5}$, and $|c(G)|=|\operatorname{Inn}(G)| \geq\left|\operatorname{Inn}\left(A_{5}\right)\right|=60$, in any case the kernel of $c$ is a nontrivial normal 2-subgroup.

## References

[1] R. Brauer, On simple groups of order $5 \cdot 3^{a} \cdot 2^{b}$, Bull. Amer. Math. Soc., 74(1968), 900-903.
[2] D. Gorenstein, Finite groups, Chelsea Publishing Co., New York(1980).
[3] D. Quillen, Homotopy properties of the poset of nontrivial p-subgroups of a group, Adv. in Math., 28(2)(1987), 101-128.
[4] J. S. Rose, A course on group theory, Dover Publications Inc., New York(1994).
[5] P. J. Webb, Subgroup complexes, Proc. Sympos. Pure Math., 47(1)(1987).

