DOI QR코드

DOI QR Code

Series Solution of High Order Abel, Bernoulli, Chini and Riccati Equations

  • Henk, Koppelaar (Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology) ;
  • Peyman, Nasehpour (Department of Engineering Science, Golpayegan University of Technology)
  • 투고 : 2021.06.17
  • 심사 : 2022.05.31
  • 발행 : 2022.12.31

초록

To help solving intractable nonlinear evolution equations (NLEEs) of waves in the field of fluid dynamics we develop an algorithm to find new high order solutions of the class of Abel, Bernoulli, Chini and Riccati equations of the form y' = ayn + by + c, n > 1, with constant coefficients a, b, c. The role of this class of equations in NLEEs is explained in the introduction below. The basic algorithm to compute the coefficients of the power series solutions of the class, emerged long ago and is further developed in this paper. Practical application for hitherto unknown solutions is exemplified.

키워드

과제정보

The second author is supported by the Department of Engineering Science at the Golpayegan University of Technology and his special thanks go to the Department for providing all necessary facilities available to him for successfully conducting this research.

참고문헌

  1. E. P. Adams and R. L. Hippisley, Smithsonian Mathematical Formulae and Tables of Elliptic Functions, Miscellaneous Collections, Smithsonian Institution, Washington(1922). 
  2. D. Bernoulli, Essai dune nouvelle analyse de la mortalit cause par la petite vrole, et des advantage de linoculation pour la prvenir, Die Werke von Daniel Bernoulli, Analysis und Wahrscheinlichkeitsrechnung(1766). 
  3. W. E. Boyce, R. C. DiPrima and D. B. Meade, Elementary Differential Equations and Boundary Value Problems, John Wiley and Sons, Hoboken(2017). 
  4. F. Ghomanjani and E. Khorram, Approximate solution for quadratic Riccati differential equation, J. Taibah Univ. Sci., 11(2)(2017), 246-250.  https://doi.org/10.1016/j.jtusci.2015.04.001
  5. I. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products, Academic Press, Amsterdam(2017). 
  6. P. Henrici, Automatic Computations with Power Series, J. Assoc. Comput. Mach., 3(1)(1956), 10-15.  https://doi.org/10.1145/320815.320819
  7. P. Henrici, Applied and Computational Complex Analysis Vol. 1, Wiley, New York(1988). 
  8. E. Kamke, Differentialgleichungen. Losungsmethoden Und Losungen. I. Gewohnliche Differentialgleichungen, Teubner, Stuttgart(1977). 
  9. K. Khan, H. Koppelaar, A. M. Akbar and T. Mohyud-Din, Analysis of travelling wave solutions of double dispersive sharma-Tasso-Olver equation, J. Ocean Eng. Science, 3(18)(2022), 1-14. 
  10. S. Khuri and A. M. Wazwaz, The successive differentiation computer-assisted method for solving well-known scientific and engineering models, Int. J. Numer. Methods Heat Fluid Flow, 28(12)(2018), 2862-2873.  https://doi.org/10.1108/HFF-09-2017-0379
  11. K. Knopp, Theorie und Anwendung der Unendlichen Reihen, Springer Verlag, Berlin(1964). 
  12. N. Kudryashov, Simplest equation method to look for exact solutions of nonlinear differential equations, Chaos Solitons Fractals, 24(2005), 1217-1231.  https://doi.org/10.1016/j.chaos.2004.09.109
  13. C. Liu, H. Wu, and J. Chang, Research on a Class of Ordinary Differential Equations and Application in Metallurgy, in Zhu, R. et al. (Ed.), International Conference on Information Computing and Applications ICICA 2010, II, Springer-Verlag(2010). 
  14. A. Nijenhuis and H. S. Wilf, Combinatorial Algorithms, Academic Press, Elsevier(1978). 
  15. Y. Pala and M. O. Ertas, An Analytical Method for Solving General Riccati Equation, Int. Journal of Mathematical, Computational, Physical, Electrical and Computer Engineering, 11(3)(2017), 125-130. 
  16. Y. Pala and M. O. Ertas, A New Analytical Method for Solving General Riccati Equation, Universal Journal of Applied Mathematics, 5(2)(2017), 11-16. This paper is identical to the one just above. 
  17. A. da Silva Pinto, P. N. da Silva, A. L. C. dos Santos A note about a new method for solving Riccati differential equations, Int. J. Innov. Educ. Res. 10(2022), 123-129.  https://doi.org/10.31686/ijier.vol10.iss4.3715
  18. A. D. Polyanin and V. F. Zaitsev, Handbook of Ordinary Differential Equations, Handbook of Ordinary Differential Equations, CRC Press, Taylor and Francis Group, Oxford(2018). 
  19. Lord Rayleigh, The Incidence of Light upon a Transparent Sphere of Dimensions Comparable with the Wave-Length, Proceedings of the Royal Society of London. Series A, 84(567)(1910), 25-46. 
  20. W. T. Reid, Riccati Differential Equations, Academic Press, Amsterdam(1972). 
  21. G. N. Watson, Treatise on the Theory of Bessel Functions, Cambridge University Press(1944). 
  22. J. Wimp, Computation with Recurrence Relations, Pitman Publishing, Boston(1984). 
  23. W. Zhao, M. Munir, G. Murtaza and M. Athar, Lie symmetries of Benjamin-Ono equation, Math. Biosci. Eng., 18(2021), 9496-9510. https://doi.org/10.3934/mbe.2021466