Acknowledgement
All authors equally contribute this paper. This work of H. Choi was supported by 2022 Dongil Culture and Scholarship Foundation. The work of S. Kim was supported by the National Research Foundation of Korea grant funded by the Korea government (MIST) (NRF-2022R1A2C4001306). This work of S. Y. Yang was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT) (No. 2019R1C1C1007402).
References
- R. P. Agarwal, E. Karapinar, D. O'Regan, and A. F. R.-L. de Hierro. Fixed Point Theory in Metric Type Spaces. Springer International Publishing (2015).
- B. C. Dhage. Generalised metric spaces and mappings with fixed point. Bull. Calcutta Math. Soc., 84(4)(1992), 329-336.
- L. D. Drager, J. M. Lee, and C. F. Martin. On the geometry of the smallest circle enclosing a finite set of points. J. Franklin Inst., 344(7)(2007), 929-940. https://doi.org/10.1016/j.jfranklin.2007.01.003
- M. Fr'echet. Sur quelques points du calcul fonctionnel. Rendiconti del Circolo Matematico di Palermo, 22(1)(1906), 1-74. https://doi.org/10.1007/BF03018603
- S. Gahler. 2-metrische Raume und ihre topologische Strukture. Math. Nachr, 26(1963), 115-148. https://doi.org/10.1002/mana.19630260109
- K. S. Ha, Y. J. Cho, and A. White. Strictly convex and strictly 2-convex 2-normed spaces. Math. Japonica, 33(3)(1988), 375-384.
- B. Mordukhovich, N. M. Nam, and C. Villalobos. The smallest enclosing ball problem and the smallest intersecting ball problem: existence and uniqueness of solutions. Optim. Lett., 7(5)(2013), 839-853. https://doi.org/10.1007/s11590-012-0483-7
- Z. Mustafa and B. Sims. Some remarks concerning D-metric spaces. International Conference on Fixed Point Theory and Applications, Yokohama Publ., Yokohama (2004), 189-198.
- Z. Mustafa and B. Sims. A new approach to generalized metric spaces. J. Nonlinear Convex Anal., 7(2)(2006), 289-297.
- M. Padberg and G. Rinaldi. A branch-and-cut algorithm for the resolution of large-scale symmetric traveling salesman problems. SIAM Review, 33(1)(1991), 60-100. https://doi.org/10.1137/1033004
- J. J. Sylvester. A question in the geometry of situation. Q. J. Pure Appl. Math., 79(1).
- S. Verblunsky. On the shortest path through a number of points. Proc. Am. Math. Soc., 2(6)(1951), 904-913. https://doi.org/10.1090/S0002-9939-1951-0045403-1