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Abstract. In this paper, we propose the notion of a distance between n points, called a

g-metric, which is a further generalized G-metric. Indeed, it is shown that the g-metric

with dimension 2 is the ordinary metric and the g-metric with dimension 3 is equivalent

to the G-metric.

1. Introduction

A metric is a measurement how far apart each pair elements of a given set are.
Without a doubt, a metric is one of the most important notions in mathematics and
many other scientific fields. For instance, a metric is used to quantify a dissimilarity
(or equivalently similarity) between two objects in some sense. The definition of a
metric was proposed by M. Fréchet [4] in 1906.

Definition 1.1. [4] Let Ω be a nonempty set. A function d : Ω × Ω −→ R+ is
called a metric or distance function on Ω if it satisfies the following conditions:

(1) (identity) d(x, y) = 0 if and only if x = y,
(2) (non-negativity) d(x, y) > 0 if x ̸= y,
(3) (symmetry) d(x, y) = d(y, x) for all x, y ∈ Ω,
(4) (triangle inequality) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ Ω.

∗ Corresponding Author.
Received September 7, 2022; accepted December 12, 2022.
2020 Mathematics Subject Classification: 54E35.
Key words and phrases: G-metric space; Generalized G-metric space.

773



774 H. Choi, S. Kim and S. Y. Yang

The pair (Ω, d) is called a metric space.

In 1963, Gahler [5] generalized an ordinary metric space, called a 2-metric space.
It, however, was shown in [6] that not every 2-metric is continuous and there is no
strong connection between fixed point theorems in an ordinary metric space and in a
2-metric space, which means that a 2-metric space is not a natural generalization of
an ordinary metric space. For this reason, Dhage [2] introduced a newly generalized
metric space, called D-metric space, and related fixed point theorems. However,
Mustafa and Sims [8] pointed out that similar problems occur in the setting of
Dhage, and they [9] proposed an appropriate notion of a generalized metric space.
See [1] and references therein for more details.

Definition 1.2. [9] Let Ω be a nonempty set. A function G : Ω×Ω×Ω −→ R+ is
called a G-metric on Ω if it satisfies the following conditions:

(G1) G(x, y, z) = 0 if x = y = z,
(G2) G(x, x, y) > 0 for all x, y ∈ Ω with x ̸= y,
(G3) G(x, x, y) ≤ G(x, y, z) for all x, y, z ∈ Ω with y ̸= z,
(G4) G(x, y, z) = G(x, z, y) = · · · (symmetry in all three variables x, y, z),
(G5) G(x, y, z) ≤ G(x,w,w) +G(w, y, z) for all x, y, z, w ∈ Ω.

The pair (Ω, G) is called a G-metric space. A G-metric space (Ω, G) is said to be
symmetric if

(G6) G(x, y, y) = G(x, x, y) for all x, y ∈ Ω.

More generalized measurement methods are required to be considered in order to
analyze more complex data sets such as grouped multivariate data. In this paper,
we propose a generalized notion of a metric between n points, called a g-metric.
It coincides with the ordinary distance between two points and with the G-metric
between three points. Furthermore, we establish fundamental topological notions
and properties on the g-metric space including the convergence of sequences and
continuity of mappings.

2. Structure of A g-Metric Space

Let N (resp. R) be the set of all nonnegative integers (resp. all real numbers).
We denote as R+ the set of all nonnegative real numbers. For a finite set A, we
denote the number of distinct elements of A by n(A).

We now propose a new definition of a generalized metric for n number of points

instead of two or three points in a given set. For a set Ω, we denote Ωn :=

n∏
i=1

Ω.

Definition 2.1. Let Ω be a nonempty set. A function g : Ωn −→ R+ is called a
generalized metric or simply g-metric with dimension n (n ≥ 2) on Ω if it satisfies
the following conditions:

(g1) (positive definiteness) g(x1, . . . , xn) = 0 if and only if x1 = · · · = xn,
(g2) (permutation invariancy) g(x1, . . . , xn) = g(xσ(1), . . . , xσ(n)) for any permu-

tation σ on {1, . . . , n},
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(g3) (monotonicity) g(x1, . . . , xn) ≤ g(y1, . . . , yn) for all (x1, . . . , xn), (y1, . . . , yn) ∈
Ωn with {xi : i = 1, . . . , n} ⊊ {yi : i = 1, . . . , n},

(g4) (triangle inequality) for all x1, . . . , xs, y1, . . . , yt, w ∈ Ω with s+ t = n

g(x1, . . . , xs, y1, . . . , yt) ≤ g(x1, . . . , xs, w, . . . , w) + g(y1, . . . , yt, w, . . . , w).

The pair (Ω, g) is called a g-metric space.

Definition 2.2. A g-metric on Ω is called multiplicity-independent if the following
holds

g(x1, . . . , xn) = g(y1, . . . , yn)

for all (x1, . . . , xn), (y1, . . . , yn) ∈ Ωn with {xi : i = 1, . . . , n} = {yi : i = 1, . . . , n}.

Note that for a given multiplicity-independent g-metric with dimension 3, it
holds that g(x, y, y) = g(x, x, y). For a given multiplicity-independent g-metric with
dimension 4, it holds that g(x, y, y, y) = g(x, x, y, y) = g(x, x, x, y) and g(x, x, y, z) =
g(x, y, y, z) = g(x, y, z, z).

Remark 2.3. If we allow equality under the condition of monotonicity in Definition
2.1, i.e., “g(x1, . . . , xn) ≤ g(y1, . . . , yn) for all (x1, . . . , xn), (y1, . . . , yn) ∈ Ωn with
{xi : i = 1, . . . , n} ⊆ {yi : i = 1, . . . , n}”, then every g-metric becomes multiplicity-
independent.

Let us explain why the condition (g4) can be considered as a generalization of
the triangle inequality. Recall that the triangle inequality condition for a distance
function d is d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z.

The point w is required to measure approximately the distance between x and y
with the distances between x and w and between w and y. Note that one cannot
measure the distance between x and y by the distances d(x,w1) and d(y, w2) with
w1 ̸= w2. Consider d(x, y) as a dissimilarity between x and y. Clearly, if x = y, then
the dissimilarity is 0, vice versa. Also, the dissimilarity between x and y is same
as the dissimilarity between y and x. If x (resp. y) and z (resp. z) are sufficiently
similar, then by the triangle inequality x and y must be sufficiently similar.

In the similar way, one can generalize the definition of triangle inequality for
the g-metric. Specifically, one can see from the definition of triangle inequality
for the g-metric that if both g(x1, . . . , xs, w, . . . , w) and g(y1, . . . , yt, w, . . . , w) are
sufficiently small, then g(x1, . . . , xs, y1, . . . , yt) must be sufficiently small. That is,
the higher similarities two data sets {x1, . . . , xs, w} and {y1, . . . , yt, w} have, the
higher similarity data set {x1, . . . , xs, y1, . . . , yt} does. Note that w is a necessary
point to combine information about similarity for each data set.

The following theorem shows us that g-metrics generalize the notions of ordinary
metric and G-metric.

Theorem 2.4. Let Ω be a given nonempty set. The following are true.

(1) d is a g-metric with dimension 2 on Ω if and only if d is a metric on Ω.
(2) d is a (resp. multiplicity-independent) g-metric with dimension 3 on Ω if

and only if d is a (resp. symmetric) G-metric on Ω.
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Remark that since a g-metric with dimension 3 on a nonempty set Ω is a G-
metric, any g-metrics with dimension 3 satisfy all properties of the G-metric as
shown in [9].

A new g-metric can be constructed from given g-metrics. The proof is left to the
reader.

Lemma 2.5. Let (Ω, g) and (Ω, g̃) be g-metric spaces. Then the following functions,
denoted by d, are g-metrics on Ω.

(1) d(x1, x2, . . . , xn) = g(x1, x2, . . . , xn) + g̃(x1, x2, . . . , xn).
(2) d(x1, x2, . . . , xn) = ψ(g(x1, x2, . . . , xn)) where ψ is a function on [0,∞)

satisfies
(i) ψ is increasing on [0,∞);
(ii) ψ(0) = 0;
(iii) ψ(x+ y) ≤ ψ(x) + ψ(y) for all x, y ∈ [0,∞).

Example 2.6. The following functions, denoted by ψ, satisfy the conditions in
Lemma 2.5 (2). Thus, each ψ ◦ g is a g-metric for any g-metric g.

(1) (ψ ◦ g)(x1, . . . , xn) = kg(x1, . . . , xn) where ψ(x) = kx with a fixed k > 0.

(2) (ψ ◦ g)(x1, . . . , xn) =
g(x1, . . . , xn)

1 + g(x1, . . . , xn)
where ψ(x) =

x

1 + x
.

(3) (ψ ◦ g)(x1, . . . , xn) =
√
g(x1, . . . , xn) where ψ(x) =

√
x. Furthermore, it is

true for ψ(x) = x1/p with a fixed p ≥ 1.
(4) (ψ ◦ g)(x1, . . . , xn) = log (g(x1, . . . , xn) + 1) where ψ(x) = log (x+ 1).
(5) (ψ ◦ g)(x1, . . . , xn) = min{k, g(x1, . . . , xn)} where ψ(x) = min{k, x} with a

fixed k > 0.

Lemma 2.7. Let g be a g-metric with dimension n on a nonempty set Ω. The
following are true:

(1) g(x, . . . , x︸ ︷︷ ︸
s times

, y, . . . , y) ≤ g(x, . . . , x︸ ︷︷ ︸
s times

, w, . . . , w) + g(w, . . . , w︸ ︷︷ ︸
s times

, y, . . . , y),

(2) g(x, y, . . . , y) ≤ g(x,w, . . . , w) + g(w, y, . . . , y),
(3) g(x, . . . , x︸ ︷︷ ︸

s times

, w, . . . , w) ≤ sg(x,w, . . . , w) and

g(x, . . . , x︸ ︷︷ ︸
s times

, w, . . . , w) ≤ (n− s)g(w, x, . . . , x),

(4) g(x1, x2, . . . , xn) ≤
n∑

i=1

g(xi, w, . . . , w),

(5)
∣∣g(y, x2, . . . , xn)− g(w, x2, . . . , xn)

∣∣ ≤ max{g(y, w, . . . , w), g(w, y, . . . , y)},
(6)

∣∣g(x, . . . , x︸ ︷︷ ︸
s times

, w, . . . , w)− g(x, . . . , x︸ ︷︷ ︸
s̃ times

, w, . . . , w)
∣∣ ≤ ∣∣s− s̃

∣∣g(x,w, . . . , w).
(7) g(x,w, . . . , w) ≤ (1 + (s− 1)(n− s))g(x, . . . , x︸ ︷︷ ︸

s times

, w, . . . , w),

Proof. (1) and (2) follow from the condition (g4). Note that for a multiplicity-
independent g-metric g, it is true that g(y, w, . . . , w) = g(w, y, . . . , y).
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(3) By the condition (g4), it follows that

g(x, . . . , x︸ ︷︷ ︸
s times

, w, . . . , w) ≤ g( x, . . . , x︸ ︷︷ ︸
s − 1 times

, w, w) + g(x,w, . . . , w)

≤ g( x, . . . , x︸ ︷︷ ︸
s − 2 times

, w, w,w) + g(x,w, . . . , w) + g(x,w, . . . , w)

...

≤ sg(x,w, . . . , w).

(4) By the condition (g2) and (g4), it follows that

g(x1, x2, . . . , xn) ≤ g(x1, w, . . . , w) + g(x2, x3, . . . , xn, w)

≤ g(x1, w, . . . , w) + g(x2, w, . . . , w) + g(x3, . . . , xn, w, w)

...

≤
n∑

i=1

g(xi, w, . . . , w).

(5) By the condition (g4), we get the inequality

g(y, x2, . . . , xn) ≤ g(w, x2, . . . , xn) + g(y, w, . . . , w).

So

g(y, x2, . . . , xn)− g(w, x2, . . . , xn) ≤ g(y, w, . . . , w).

Similarly, we have

g(w, x2, . . . , xn)− g(y, x2, . . . , xn) ≤ g(w, y, . . . , y).

(6) By (3), it is trivial.
(7) By Lemma 2.7 (3), we have

g(x,w, . . . , w) ≤ g(x, x, w, . . . , w) + g(w, x, . . . , x)

≤ g(x, x, x, w, . . . , w) + g(w, x, . . . , x) + g(w, x, . . . , x)

...

≤ g(x, . . . , x︸ ︷︷ ︸
s times

, w, . . . , w) + (s− 1)g(w, x, . . . , x)

≤ g(x, . . . , x︸ ︷︷ ︸
s times

, w, . . . , w) + (s− 1)(n− s)g(x, . . . , x︸ ︷︷ ︸
s times

, w, . . . , w)

= (1 + (s− 1)(n− s))g(x, . . . , x︸ ︷︷ ︸
s times

, w, . . . , w).

□

For a given g-metric, we can construct a distance function.
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Proposition 2.8. For any g-metric space (Ω, g), the following are distance func-
tions.

(1) d(x, y) = g(x, . . . , x︸ ︷︷ ︸
s times

, y, . . . , y) + g(y, . . . , y︸ ︷︷ ︸
s times

x, . . . , x),

(2) d(x, y) = g(x, y, . . . , y) + g(x, x, y, . . . , y) + · · ·+ g(x, x, . . . , x, y),
(3) d(x, y) = max{g(x1, x2, . . . , xn) : xi ∈ {x, y}, 1 ≤ i ≤ n}.

We give several interesting examples of g-metric on a variety of settings in the
following.

Example 2.9. (1) (Discrete g-metric) For a nonempty set Ω, define d : Ωn →
R+ by

d(x1, . . . , xn) =

{
0 if x1 = · · · = xn,

1 otherwise

for all x1, . . . , xn ∈ Ω. Then d is a g-metric on Ω.
(2) (Diameter g-metric) Define d : Rn

+ −→ R+ by

d(x1, . . . , xn) = max
1≤i≤n

xi − min
1≤j≤n

xj

for all x1, . . . , xn ∈ R+. Then d is a g-metric on R+.
(3) (Average g-metric) For a given metric space (Ω, δ), define d : Ωn −→ R+ by

d(x1, . . . , xn) =
1

n2

n∑
i,j=1

δ(xi, xj)

for all x1, . . . , xn ∈ Ω. Then d is a g-metric on Ω.
(4) (Max g-metric) For a given metric space (Ω, δ), define d : Ωn −→ R+ by

d(x1, . . . , xn) = max
1≤i,j≤n

δ(xi, xj)

for all x1, . . . , xn ∈ Ω. Then d is a g-metric on Ω.
(5) (Shortest path g-metric) For a given metric space (Ω, δ), define d : Ωn −→

R+ by

d(x1, . . . , xn) = min
π∈S

n−1∑
i=1

δ(xπ(i), xπ(i+1))

for all x1, . . . , xn ∈ Ω.
Here, S denotes the set of all permutations on {1, . . . , n}. So d(x1, . . . , xn) is
the length of the shortest path connecting x1, . . . , xn. Finding the shortest
path is very important problem in operations research and theoretical com-
puter science, which is also known as the traveling salesman problem[10, 12].

(6) (Smallest ball g-metric) Let Ω be a nonempty subset of Rn, i.e., Ω can
be considered as an n-dimensional data set. Define d : Ωn −→ R+ by
d(x1, . . . , xn) is the diameter of the smallest closed ball, B, such that
{x1, . . . , xk} ⊆ B. This is called the smallest enclosing circle problem,
which was introduced by Sylvester[11]. For more information, see [3, 7]. It
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is an open problem that d is a g-metric for any n ≥ 4.

Remark 2.10.

(1) For a nonempty normed space (Ω, ∥ · ∥), let us define a map d : Ωn −→ R+

by

d(x1, . . . , xn) = max
1≤i≤n

∥xi∥ − min
1≤j≤n

∥xj∥

for all x1, . . . , xn ∈ Ω. Then it is not a g-metric on Ω. In fact, it holds (g2),
(g3), and (g4), but does not hold (g1) in general. Indeed, there possibly
exist x1, x2, . . . , xn ∈ Ω such that ∥x1∥ = ∥x2∥ = · · · = ∥xn∥ although
xi ̸= xj for some i ̸= j.

(2) In Example 2.9 (3), on a given metric space (Ω, δ)

d(x1, . . . , xn) =

n∑
i,j=1

δ(xi, xj)

is a g-metric by Example 2.6 (1). Then this g-metric and the max g-metric
in Example 2.9 (4) can be considered as

d(x1, . . . , xn) =

n∑
i,j=1

δ(xi, xj) = ||M ||1,

d(x1, . . . , xn) = max
1≤i,j≤n

δ(xi, xj) = ||M ||∞,

where M = [mij ]1≤i,j≤n is the n × n matrix whose entries are mij =
δ(xi, xj). Here, || · ||1 and || · ||∞ are ℓ1 and ℓ∞ matrix norms, respec-
tively. So it is a natural question whether or not ||M ||p for 1 < p <∞ is a
g-metric on the metric space (Ω, δ).

3. Topology on A g-Metric Space

For a given metric space (Ω, d), we denote the ball centered at x with radius r
by Bd(x, r). We define a ball on a g-metric space.

Definition 3.1. Let (Ω, g) be a g-metric space. For x ∈ Ω and r > 0, the ball
centered at x with radius r is

Bg(x, r) = {y ∈ Ω : g(x, y, . . . , y) < r}.

Proposition 3.2. Let (Ω, g) be a g-metric space. Then the following hold.

(1) If g(x1, x2, . . . , xn) < r and n({x1, x2, . . . , xn}) ≥ 3, then xi ∈ Bg(x1, r) for
all i = 1, . . . , n.

(2) If g is multiplicity-independent and g(x1, x2, . . . , xn) < r, then xi ∈ Bg(x1, r)
for all i = 1, . . . , n.

(3) Let y ∈ Bg(x1, r1)∩Bg(x2, r2). Then there exists δ > 0 such that Bg(y, δ) ⊆
Bg(x1, r1) ∩Bg(x2, r2).

Proof. Suppose that g(x1, x2, . . . , xn) < r. Set X = {x1, x2, . . . , xn}.
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(1) Since n(X) ≥ 3, clearly {x1, xi, xi, . . . , xi} ⊊ X for each i ∈ N. By mono-
tonicity of the g-metric, we have g(x1, xi, . . . , xi) ≤ g(x1, x2, . . . , xn) < r.
So xi ∈ Bg(x1, r) for all i ∈ N.

(2) It suffices to show that it holds for n(X) = 2. Since a g-metric is multiplicity-
independent, g(x1, xi, . . . , xi) ≤ g(x1, x2, . . . , xn) < r.

(3) Since y ∈ Bg(x1, r1) ∩ Bg(x2, r2), it holds that g(xi, y, . . . , y) < ri for
i = 1, 2. We take δ = min{ri − g(xi, y, . . . , y) : i = 1, 2}. Then for ev-
ery z ∈ Bg(y, δ), by Lemma 2.7 (2) we have g(xi, z, . . . , z) ≤ g(xi, y, . . . , y)+
g(y, z, . . . , z) < g(xi, y, . . . , y)+δ < ri for each i = 1, 2. Therefore, Bg(y, δ) ⊆
Bg(x1, r1) ∩Bg(x2, r2).

□

Due to the preceding proposition, the collection of all balls, B = {Bg(x, r) : x ∈
Ω, r > 0} forms a basis for a topology on Ω. We call the topology generated by B
the g-metric topology on Ω.

Theorem 3.3. Let (Ω, g) be a g-metric space and let d(x, y) = g(x, y, . . . , y) +
g(y, x, . . . , x). Then

Bg

(
x1,

r

n

)
⊆ Bd(x1, r) ⊆ Bg(x1, r).

Proof. Recall that y ∈ Bg(x1, r) ⇐⇒ g(x1, y, . . . , y) < r.

(i) Let x ∈ Bg

(
x1,

r

n

)
. Then g(x1, x, . . . , x) <

r

n
. It follows that

d(x1, x) = g(x1, x, . . . , x) + g(x, x1, . . . , x1)

≤ g(x1, x, . . . , x) + (n− 1)g(x1, x, . . . , x)

≤ ng(x1, x, . . . , x) < r.

So, x ∈ Bd(x1, r).
(ii) Let x ∈ Bd(x1, r). Then d(x1, x) = g(x1, x, . . . , x) + g(x, x1, . . . , x1) < r.

Since g(x1, x, . . . , x) ≤ (n− 1)g(x, x1, . . . , x1), it follows that

n

n− 1
g(x1, x, . . . , x) ≤ g(x1, x, . . . , x) + g(x, x1, . . . , x1) < r.

Thus, g(x1, x, . . . , x) < r, i.e., x ∈ Bg(x1, r) as desired. □

Remark 3.4. Every g-metric space is topologically equivalent to a metric space
arising from the metric d defined in Theorem 3.3. This makes it possible to transport
many concepts and results from metric spaces into the g-metric setting.

Definition 3.5. Let (Ω, g) be a g-metric space. Let x ∈ Ω be a point and {xk} ⊆ Ω
be a sequence.

(1) {xk} converges to x, denoted by {xk}
g−→ x, if for all ε > 0 there exists

N ∈ N such that

i1, . . . , in−1 ≥ N =⇒ g(x, xi1 , . . . , xin−1
) < ε.
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For such a case, {xk} is said to be convergent in Ω and x is called the limit
of {xk}.

(2) {xk} is said to be Cauchy if for all ε > 0 there exists N ∈ N such that

i1, . . . , in ≥ N =⇒ g(xi1 , . . . , xin) < ε.

(3) (Ω, g) is complete if every Cauchy sequence in (Ω, g) is convergent in (Ω, g).

Proposition 3.6. The following are true.

(1) The limit of a convergent sequence in a g-metric space is unique.
(2) Every convergent sequence in a g-metric space is a Cauchy sequence.

Proof. (1) Let (Ω, g) be a g-metric space and let {xk} ⊆ Ω be a convergent
sequence. Suppose that x, y ∈ Ω are the limits of {xk}. By Definition 3.5
(1), there exists N1, N2 ∈ N such that

g(x, xi1 , . . . , xin−1
) <

ε

n
for all i1, . . . , in ≥ N1,

g(y, xi1 , . . . , xin−1
) <

ε

n
for all i1, . . . , in ≥ N2.

Set N = max{N1, N2}. If m ≥ N , then by the condition (g4) and Lemma
2.7 (3), it follows that

g(x, y, y, . . . , y) ≤ g(x, xm, xm, . . . , xm) + g(xm, y, y, . . . , y)

≤ g(x, xm, xm, . . . , xm) + (n− 1)g(y, xm, xm, . . . , xm)

<
ε

n
+

(n− 1)ε

n
= ε.

Since ε is arbitrary, g(x, y, y, . . . , y) = 0. Thus, x = y by the condition (g1).
(2) Let (Ω, g) be a g-metric space and let {xk} ⊆ Ω be a convergent sequence

with the limit x. By Definition 3.5 (1), there exists N ∈ N such that

g(x, xi1 , . . . , xin−1
) <

ε

n
for all i1, . . . , in−1 ≥ N.

By Lemma 2.7 (4) and the monotonicity condition for the g-metric, it follows
that

g(xi1 , . . . , xin) ≤
n∑

k=1

g(xik , x, x, . . . , x) <

n∑
k=1

ε

n
= ε.

Thus, {xk} is a Cauchy sequence in (Ω, g).
□

Lemma 3.7. Let (Ω, g) be a g-metric space. Let {xk} ⊆ Ω be a sequence and x ∈ Ω.
The following are equivalent.

(1) {xk}
g−→ x.

(2) For a given ε > 0, there exists N ∈ N such that xk ∈ Bg(x, ε) for all k ≥ N .
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(3) lim
k1,...,ks→∞

g(xk1
, . . . , xks︸ ︷︷ ︸
s times

, x, . . . , x) = 0 for a fixed 1 ≤ s ≤ n − 1. That

is, for all ε > 0, there exists N ∈ N such that k1, . . . , ks ≥ N implies
g(xk1 , . . . , xks , x, . . . , x) < ε.

Proof. ((1) ⇐⇒ (2)) It is clear by the definition of convergence.
((2) =⇒ (3)) Assume that for a given ε > 0, there exists N ∈ N such that k ≥ N

implies xk ∈ Bg

(
x,
ε

s

)
, i.e., g(x, xk, . . . , xk) <

ε

s
. If k1, . . . , ks ≥ N , then by Lemma

2.7 (4), we have that g(xk1 , . . . , xks , x, . . . , x) ≤
s∑

j=1

g(x, xkj , . . . , xkj ) < ε.

((3) =⇒ (2)) Let ε > 0. Assume that there exists N ∈ N such that

k1, . . . , ks ≥ N =⇒ g(k1, . . . , ks, x, . . . , x) <
ε

(1 + (s− 1)(n− s))
.

If k ≥ N , then by Lemma 2.7 (7) it follows that

g(x, xk, . . . , xk) ≤ (1 + (s− 1)(n− s))g(xk, . . . , xk︸ ︷︷ ︸
s times

, x, . . . , x) < ε.

□

Lemma 3.8. Let (Ω, g) be a g-metric space. Let {xk} ⊆ Ω be a sequence. The
following are equivalent.

(1) {xk} is Cauchy.
(2) g(xk, xk+1, xk+1, . . . , xk+1) −→ 0 as k −→ ∞.
(3) lim

k,ℓ→∞
g(xk, . . . , xk︸ ︷︷ ︸

s times

, xℓ, . . . , xℓ) = 0 for a fixed 1 ≤ s ≤ n− 1.

Proof. ((1) =⇒ (2)) It is trivial by Definition 3.5 (2).
((2) =⇒ (3)) Without loss of generality, we can assume k < ℓ. Let ε > 0

be given. Then for each m = 0, . . . , ℓ − k − 1 there exists Nm ∈ N such that

g(xk+m, xk+m+1, . . . , xk+m+1) <
ε

n(ℓ− k)
. Let N = max{N0, . . . , Nℓ−k−1}. Then

by Lemma 2.7 (3),(4), and the conditions (g4), we have that

g(xk, . . . , xk︸ ︷︷ ︸
s times

, xℓ, . . . , xℓ) ≤ sg(xk, xℓ, . . . , xℓ)

≤ s
(
g(xk, xk+1, . . . , xk+1) + g(xk+1, xℓ, . . . , xℓ)

)
...

≤ s

ℓ−1∑
i=k

g(xi, xi+1, . . . , xi+1) < ε,

for all k ≥ N . If k, ℓ ≥ N , then g(xk, . . . , xk︸ ︷︷ ︸
s times

xℓ, . . . , xℓ) < ε.
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((3) =⇒ (1)) Let ε > 0 be given. Assume that there exists N ∈ N such that

k, ℓ ≥ N =⇒ g(xk, . . . , xk︸ ︷︷ ︸
s times

, xℓ, . . . , xℓ) <
ε

n(1 + (s+ 1)(n− s))
.

If i0, i1, . . . , in ≥ N , then by Lemma 2.7 (4),(7) it follows that

g(xi0 , xi1 , . . . , xin) ≤
n∑

k=0

g(xik , xi0 , . . . , xi0)

≤
n∑

k=0

(1 + (s+ 1)(n− s))g(xik , . . . , xik︸ ︷︷ ︸
s times

, xi0 , . . . , xi0) < ε.

□

Definition 3.9. Let (Ω, g) be a g-metric space, and let ε > 0 be given.

(1) A set A ⊆ Ω is called an ε-net of (Ω, g) if for each x ∈ Ω, there exists a ∈ A
such that x ∈ Bg(a, ε). If the set A is finite then A is called a finite ε-net
of (Ω, g).

(2) A g-metric space (Ω, g) is called totally bounded if for every ε > 0 there
exists a finite ε-net.

(3) A g-metric space (Ω, g) is called compact if it is complete and totally
bounded.

Definition 3.10. Let (Ω1, g1) and (Ω2, g2) be g-metric spaces.

(1) A mapping T : Ω1 −→ Ω2 is said to be continuous at a point x ∈ Ω1

provided that for each open ball Bg2(T (x), ε), there exists an open ball
Bg1(x, δ) such that T (Bg1(x, δ)) ⊆ Bg2(T (x), ε).

(2) T : Ω1 −→ Ω2 is said to be continuous if it is continuous at every point of
Ω1.

(3) T : Ω1 −→ Ω2 is called a homeomorphism if T is bijective, and T and
T−1 are continuous. In this case, the spaces Ω1 and Ω2 are said to be
homeomorphic.

(4) A property P of g-metric spaces is called a topological invariant if P satisfies
the condition:
If a space Ω1 has the property P and if Ω1 and Ω2 are homeomorphic, then
Ω2 also has the property P.

Proposition 3.11. Let (Ω1, g1) and (Ω2, g2) be g-metric spaces, and let T : Ω1 −→
Ω2 be a mapping. Then the following are equivalent.

(1) T is continuous.
(2) For each point x ∈ Ω1 and for each sequence {xk} in Ω1 converging to x,

{T (xk)} converges to T (x).

Proof. ((1) =⇒ (2)) Let x ∈ Ω1, and let {xk} be a sequence in Ω1 converging to x.
Since T : Ω1 −→ Ω2 is continuous, for a given ε > 0 there exists δ > 0 such that

T (Bg1(x, δ)) ⊆ Bg2(T (x), ε(n − 1)−2). Since {xk}
g−→ x, there is N ∈ N such that
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g(x, xi1 , . . . , xin−1
) < δ for all i1, . . . , in−1 ≥ N. Thus g(x, xik , . . . , xik) < δ for each

k = 1, . . . , n− 1. Then the continuity of T gives rise to the inequality

g(T (x), T (xik), . . . , T (xik)) <
ε

(n− 1)2

for each k ∈ N. By Lemma 2.7 (3) and (4) we have

g(T (x), T (xi1), . . . , T (xin−1
)) ≤

n−1∑
k=1

g(T (xik), T (x), . . . , T (x))

≤
n−1∑
k=1

(n− 1)g(T (x), T (xik), . . . , T (xik)) < ε.

Therefore, {T (xk)} converges to T (x).
((2) =⇒ (1)) Suppose that T is not continuous, i.e. there exists x ∈ Ω1 such that

T is not continuous at x. Then there exists ε > 0 such that for each δ > 0 there is
y ∈ Ω1 with g(x, y, . . . , y) < δ but g(T (x), T (y), . . . , T (y)) ≥ ε. Then for each k ∈ N
we can take xk ∈ Ω1 such that g(x, xk, . . . , xk) <

1
k but g(T (x), T (xk), . . . , T (xk)) ≥

ε. Hence, {xk} converges to x but {T (xk)} does not converges to T (x), which
contradicts to (2). □
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