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ABSTRACT. In this paper, we propose the notion of a distance between n points, called a
g-metric, which is a further generalized G-metric. Indeed, it is shown that the g-metric
with dimension 2 is the ordinary metric and the g-metric with dimension 3 is equivalent
to the G-metric.

1. Introduction

A metric is a measurement how far apart each pair elements of a given set are.
Without a doubt, a metric is one of the most important notions in mathematics and
many other scientific fields. For instance, a metric is used to quantify a dissimilarity
(or equivalently similarity) between two objects in some sense. The definition of a
metric was proposed by M. Fréchet [4] in 1906.

Definition 1.1. [4] Let © be a nonempty set. A function d : @ x Q@ — Ry is
called a metric or distance function on 2 if it satisfies the following conditions:

(1) (identity) d(z,y) = 0 if and only if x =y,

(2) (non-negativity) d(x,y) > 0 if x # y,

(3) (symmetry) d(z,y) = d(y, z) for all z,y € Q,

(4) (triangle inequality) d(z,y) < d(z, z) + d(z,y) for all z,y, z € Q.
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The pair (2, d) is called a metric space.

In 1963, Gahler [5] generalized an ordinary metric space, called a 2-metric space.
It, however, was shown in [6] that not every 2-metric is continuous and there is no
strong connection between fixed point theorems in an ordinary metric space and in a
2-metric space, which means that a 2-metric space is not a natural generalization of
an ordinary metric space. For this reason, Dhage [2] introduced a newly generalized
metric space, called D-metric space, and related fixed point theorems. However,
Mustafa and Sims [8] pointed out that similar problems occur in the setting of
Dhage, and they [9] proposed an appropriate notion of a generalized metric space.
See [1] and references therein for more details.

Definition 1.2. [9] Let  be a nonempty set. A function G: 2 x Qx Q — Ry is
called a G-metric on § if it satisfies the following conditions:

(G1) G,y,2) =itz =y = 7,

(G2) G(z,z,y) >0 for all z,y € Q with = # y,

(G )G(xacy)<G(x y,z) for all x,y,z € Q with y # z,

(G4) G(z,y,2) = G(z,z,y) = --- (symmetry in all three variables x,y, z),
(G5) G(z,y,2) < G(J;,w,w) + G(w,y, z) for all z,y,z,w € Q.

The pair (2, G) is called a G-metric space. A G-metric space ({2, G) is said to be
symmetric if

(G6) G(z,y,y) = G(z,x,y) for all z,y € Q.

More generalized measurement methods are required to be considered in order to
analyze more complex data sets such as grouped multivariate data. In this paper,
we propose a generalized notion of a metric between n points, called a g-metric.
It coincides with the ordinary distance between two points and with the G-metric
between three points. Furthermore, we establish fundamental topological notions
and properties on the g-metric space including the convergence of sequences and
continuity of mappings.

2. Structure of A g-Metric Space

Let N (resp. R) be the set of all nonnegative integers (resp. all real numbers).
We denote as Ry the set of all nonnegative real numbers. For a finite set A, we
denote the number of distinct elements of A by n(A).

We now propose a new definition of a generalized metric for n number of points

n

instead of two or three points in a given set. For a set 2, we denote Q" := H Q.

Definition 2.1. Let €2 be a nonempty set. A function g : Q" — Ry is called a
generalized metric or simply g-metric with dimension n (n > 2) on  if it satisfies
the following conditions:
(g1) (positive definiteness) g(x1,...,2,) = 0if and only if 1 = --- = x,,
(92) (permutation invariancy) g(z1,...,%n) = g(Zs(1), - - - s To(n)) for any permu-
tation o on {1,...,n},
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(93) (IHOHOtOHiCity) g(xla cee 7xn) S g(yla' . ayn) for all (xlw . ;xn)a (ylv' c ,yn) €
Q" with {z; :i=1,...,n} C{y;:i=1,...,n},
(g4) (triangle inequality) for all z1,...,zs,v1,..., 9, w € Q with s+t =mn

g(:rlv"'?xsaylw"ayt) gg(xlﬂ"'vxmwa"'?w)+g(y17"'7ytvw7"'7w)'
The pair (2, g) is called a g-metric space.

Definition 2.2. A g-metric on € is called multiplicity-independent if the following
holds

9@, ) = 9(Y1, -5 Un)
for all (z1,...,2n),(y1,...,yn) € Q" with {z;:i=1,...,n}={y;:i=1,...,n}

Note that for a given multiplicity-independent g-metric with dimension 3, it
holds that g(z,y,y) = g(z, z,y). For a given multiplicity-independent g-metric with
dimension 4, it holds that g(z,y,y,vy) = 9(z, z,y,y) = g(z,z, x,y) and g(z, z,y, z) =
g(xayayvz) = g(x,y,z,z).

Remark 2.3. If we allow equality under the condition of monotonicity in Definition
2.1, ie., “g(x1,. ., 2n) < g(y1,---,yn) for all (z1,...,2,), (Y1,.-.,Yn) € Q" with
{z;:i=1,...,n} C{y; : 1 =1,...,n}”, then every g-metric becomes multiplicity-
independent.

Let us explain why the condition (g4) can be considered as a generalization of
the triangle inequality. Recall that the triangle inequality condition for a distance
function d is d(z,y) < d(x,z) + d(z,y) for all z,y, 2.

The point w is required to measure approximately the distance between x and y
with the distances between x and w and between w and y. Note that one cannot
measure the distance between z and y by the distances d(z,w1) and d(y, w2) with
wy # wsy. Consider d(x,y) as a dissimilarity between  and y. Clearly, if z = y, then
the dissimilarity is 0, vice versa. Also, the dissimilarity between x and y is same
as the dissimilarity between y and x. If = (resp. y) and z (resp. z) are sufficiently
similar, then by the triangle inequality x and y must be sufficiently similar.

In the similar way, one can generalize the definition of triangle inequality for
the g-metric. Specifically, one can see from the definition of triangle inequality
for the g-metric that if both g(z1,...,2s,w,...,w) and g(y1,...,y:, w,...,w) are
sufficiently small, then g(z1,...,zs,y1,-..,y:) must be sufficiently small. That is,
the higher similarities two data sets {z1,...,2zs, w} and {y1,...,y: w} have, the
higher similarity data set {x1,...,2s,91,...,y:} does. Note that w is a necessary
point to combine information about similarity for each data set.

The following theorem shows us that g-metrics generalize the notions of ordinary
metric and G-metric.

Theorem 2.4. Let ) be a given nonempty set. The following are true.

(1) d is a g-metric with dimension 2 on Q if and only if d is a metric on Q.
(2) d is a (resp. multiplicity-independent) g-metric with dimension 3 on Q if
and only if d is a (resp. symmetric) G-metric on €.
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Remark that since a g-metric with dimension 3 on a nonempty set {2 is a G-
metric, any g-metrics with dimension 3 satisfy all properties of the G-metric as
shown in [9].

A new g-metric can be constructed from given g-metrics. The proof is left to the
reader.

Lemma 2.5. Let (Q,9) and (€, §) be g-metric spaces. Then the following functions,
denoted by d, are g-metrics on ).
(1) d(z1,z2,...,2n) = g(x1, T2, ..., Tpn) + §(T1,22, ..., Tp)-
(2) d(xy,za,...,2,) = Y(g(x1,22,...,2,)) where ¢ is a function on [0,00)
satisfies
(i) v is increasing on [0,00);
(i) 4(0) = 0;
(il) ¥(z+y) < v(x) +(y) for all z,y € [0,00).
Example 2.6. The following functions, denoted by %, satisfy the conditions in
Lemma 2.5 (2). Thus, each 9 o g is a g-metric for any g-metric g.
(1) (Wog)(ar,...,xn) =kg(xy,...,2,) where 1(x) = kx with a fixed k& > 0.
g(x1,. .., n) x
2) Wog) Lot here v(a) = -
(3) Wog)(x1,...,zn) = /g(x1,...,2,) where ¥(z) = /z. Furthermore, it is
true for ¢(z) = z/? with a fixed p > 1.
(4) (Wog)(xy,...,xn) =1log(g(xy,...,2,)+ 1) where 1p(x) = log (z + 1).
(5) (Yog)(x1,...,z,) = min{k, g(x1,...,2,)} where ¢¥(z) = min{k, z} with a
fixed k > 0.
Lemma 2.7. Let g be a g-metric with dimension n on a nonempty set Q). The
following are true:

(1) glzy...,z,y,...,y) < glz,...,z,w,...,w) + glw,...,w,y,...,y),
—— ———

—~

Ty Tn) =

———
s times s times s times
2) 9(z,y,....y) < glz,w,...,w) +g(w,y,...,y),
3) g(z,...,z,w,...,w) < sg(z,w,...,w) and
——
s times
glx,...,x,w,...,w) < (n—8)g(w,z,...,x),
———
s times
n
(4) g(l'l,l‘g,...,xn) Szg(xiaw7"'7w)7
i=1
(5) |g(y,x2,...,xn)—g(w,xg,...,xn)‘ §max{g(y,w,...,w),g(w,y,...,y)},
(6) |g(m7...,x7w,...7w) —g(m,...,x,w,...,w)| < |s—§|g(x,w,...,w),
———
s times S times
(7) g(z,w,...,w) <1+ (s—1)(n—s))g(z,...,z,w,...,w),
———
s times

Proof. (1) and (2) follow from the condition (g4). Note that for a multiplicity-
independent g-metric g, it is true that g(y,w,...,w) = g(w,y,...,y).
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(3) By the condition (g4), it follows that

glx,...,x,w,...,w) <g(x,...,z,w,w)+g(z,w,...,w)
N—— N——
s times s — 1 times
gg(x,...,x,w,w,w)+g(:v,w,...,w)Jrg(x,'w,...,w)
——

s — 2 times

< sg(z,w,...,w).
(4) By the condition (¢g2) and (g4), it follows that

g(xhx%“'axn) Sg(l’l,w,‘..,’UJ)+g($2,$3,...,$n,U/)
<glxy,w,...,w)+ g(za,w,...,w) 4+ g(xs,...,Tn,w, W)

n
< Zg(mi,w,...,w).
i=1

(5) By the condition (g4), we get the inequality
9y, za, ..., xpn) < glw,za,...,2,) + g(y,w, ..., w).
So
9y, z2, ..., ) — glw, 2, ..., 2y) < g(y,w,...,w).
Similarly, we have
g(w,za, ..., xn) — gy, 2y ..., xn) < glw,y,...,y).

(6) By (3), it is trivial.
(7) By Lemma 2.7 (3), we have
g(z,w,...,w) < glx,z,w,...,w)+ glw,x,..., )

Sg(SC,IE,JZ,U),...,"UJ)+g(w,.’E,...,.’E)+g(’w,$,...,$)

s times
Sg(xa"'axaw7 ,w)—l—(s—l)(n—s)g(x, , L, W, ,'UJ)
——— ——
s times s times
=1+ (s=1)(n-2s))glz,...,z,w,...,w).
——
s times

For a given g-metric, we can construct a distance function.
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Proposition 2.8. For any g-metric space (2, g), the following are distance func-
tions.
(1) d(z,y) = g(z,...,z,y,...,y) + 9(y,...,yz,...,x),
~—— N——
s times s times

(2) d(z,y) = g(z,y,...,y) +9(z,z,y,...,y) + -+ g(x,z,...,2,9),
(3) d(z,y) = max{g(x1,x2,...,2,) : x; € {z,y}, 1 <i<n}.

We give several interesting examples of g-metric on a variety of settings in the
following.

Example 2.9. (1) (Discrete g-metric) For a nonempty set €, define d : Q™ —

R+ by
0 ifeg=--=ua,,
A1, ) = na . v
1 otherwise
for all z1,...,x, € Q2. Then d is a g-metric on (2.

(2) (Diameter g-metric) Define d : R} — R by

d(z1,...,2,) = max z; — min z,
1<i<n 1<j<n
for all z1,...,2, € Ry. Then d is a g-metric on R;.

(3) (Average g-metric) For a given metric space (€2, 9), define d : Q" — R by

1 n
d(.’lﬁl,...,l‘n) = ﬁ Z 6(.’1%‘,.’17]‘)

ij=1
for all z1,...,2z, € Q. Then d is a g-metric on €.
(4) (Max g-metric) For a given metric space (£2,4), define d : Q" — R by

d(xla cee 7mn) = 123“);715(1'17 xj)
for all z1,...,x, € Q. Then d is a g-metric on (2.
(5) (Shortest path g-metric) For a given metric space (£2,0), define d : Q" —
R+ by
n—1
d(xl, S ,xn) = Ernég 2 (5(3%@), xw(iJrl))

for all z1,...,z, € Q.
Here, S denotes the set of all permutations on {1,...,n}. Sod(z1,...,2,)is
the length of the shortest path connecting x1,...,x,. Finding the shortest
path is very important problem in operations research and theoretical com-
puter science, which is also known as the traveling salesman problem[10, 12].
(6) (Smallest ball g-metric) Let 2 be a nonempty subset of R™, ie., Q can
be considered as an n-dimensional data set. Define d : Q" — R, by
d(z1,...,2,) is the diameter of the smallest closed ball, B, such that
{z1,...,2} € B. This is called the smallest enclosing circle problem,
which was introduced by Sylvester[11]. For more information, see [3, 7]. It
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is an open problem that d is a g-metric for any n > 4.

Remark 2.10.

(1)

For a nonempty normed space (€, || - ||), let us define a map d: Q" — Ry
by
d(zq,... = || — mi ;
(1) = oo il = i o]

for all z1,...,z, € Q. Then it is not a g-metric on Q. In fact, it holds (¢g2),
(g3), and (g4), but does not hold (g1) in general. Indeed, there possibly
exist x1,Z2,...,x, € Q such that ||z1]] = ||z2]| = -+ = ||zn| although
x; # x; for some @ # j.

In Example 2.9 (3), on a given metric space (£2,0)

d(z1,...,mp) = Z O(xi, x5)

4,J=1

is a g-metric by Example 2.6 (1). Then this g-metric and the max g-metric
in Example 2.9 (4) can be considered as

d(xy,... 2n) = Z 6(zi,z5) = [| M|,

ij=1
Ao von) = max 8(w,a) = 1Mo,
where M = [my;]i<ij<n i the n x n matrix whose entries are m;; =
8(xs, ;). Here, || - ||1 and || - ||oc are ¢; and ¢, matrix norms, respec-

tively. So it is a natural question whether or not ||M||, for 1 <p < oo is a
g-metric on the metric space (€, ).

3. Topology on A g-Metric Space

For a given metric space (Q2,d), we denote the ball centered at x with radius r
by Bg(z,r). We define a ball on a g-metric space.

Definition 3.1. Let (€, g) be a g-metric space. For z €  and r > 0, the ball
centered at z with radius r is

By(z,r) ={y € Q:g(x,y,...,y) <1}

Proposition 3.2. Let (Q,g) be a g-metric space. Then the following hold.

(1)
(2)
3)

If g(x1,22,...,2n) <1 and n({z1,22,...,2,}) > 3, then x; € By(x1,r) for
alli=1,...,n.

If g is multiplicity-independent and g(z1, %2, ..., Tp) < 1, thenx; € By(z1,7)
foralli=1,...,n.

Lety € By(x1,m1)NBy(x2,r2). Then there exists § > 0 such that By(y,d) C
Bg(l‘l,’l“l) ﬂBg(LL'Q,TQ).

Proof. Suppose that g(z1,2a,...,2n) <7. Set X = {x1,29,...,2,}.
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(2)
(3)
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Since n(X) > 3, clearly {x1,z;,z;,...,2;} € X for each ¢ € N. By mono-
tonicity of the g-metric, we have g(x1,x;,...,x;) < g(z1,z2,...,2,) < 1.
So x; € By(xq,7) for all i € N.
Tt suffices to show that it holds for n(X) = 2. Since a g-metric is multiplicity-
independent, g(z1,z;, ..., %) < g(x1,%9,...,%y) < T.
Since y € Bg(z1,7m1) N By(x2,72), it holds that g(z;,y,...,y) < r; for
i = 1,2. We take 6 = min{r; — g(x;,y,...,y) : ¢ = 1,2}. Then for ev-
ery z € By(y,9), by Lemma 2.7 (2) we have g(z;, 2,...,2) < g(@i,y,...,y)+
9y, z,...,2) < g(zi,y,...,y)+0 < r;foreach i = 1,2. Therefore, By(y,d) C
Bg(l‘l, ’/‘1) N Bg(l‘g, 7"2).

(|

Due to the preceding proposition, the collection of all balls, B = {By(z,r) : x €
Q,r > 0} forms a basis for a topology on 2. We call the topology generated by B
the g-metric topology on €.

Theorem 3.3. Let (2,9) be a g-metric space and let d(x,y) = g(z,y,...,y) +

9y, x,...

,x). Then

B, (x1, 1) C By(z1,7) € By(z1,71).
n

Proof. Recall that y € By(z1,7) <= g(z1,9,...,y) <T.
(i) Let € By (931, Z). Then g(z1,z,...,7) < Z. It follows that
n n

d(zy,2) = g(z1,2,...,2) + g(x,z1,...,21)
'7$)+(n_1)g(x171'7...71')
<ng(z1,z,...,x) <"

S g(xlaxv ..

So, © € Bg(x1,7).
(ii) Let = € By(z1,7). Then d(z1,2) = g(z1,2,...,2) + g(z,z1,...,21) < T.
Since g(z1,z,...,2) < (n—1)g(x,x1,...,21), it follows that

n

-1

g(z1,z,...,x) < glxy,x,...,2) + g(z,21,...,21) < T

Thus, g(z1,z,...,x) <7, ie, x € By(xy,r) as desired. O

Remark 3.4. Every g-metric space is topologically equivalent to a metric space
arising from the metric d defined in Theorem 3.3. This makes it possible to transport
many concepts and results from metric spaces into the g-metric setting.

Definition 3.5. Let (2, g) be a g-metric space. Let x € Q be a point and {zx} C Q
be a sequence.

(1)

{1} converges to x, denoted by {x} —% z, if for all € > 0 there exists
N € N such that

Wy eesin_1 =N = g(x,i;,...,Ti,_,) <E.



Generalized G-Metric Spaces 781

For such a case, {z} is said to be convergent in  and z is called the limit

of {zx}.
(2) {zx} is said to be Cauchy if for all € > 0 there exists N € N such that

yeeoyin 2N = g(xyy,...,2;,) <E&.
(3) (9, 9) is complete if every Cauchy sequence in (€2, g) is convergent in (€2, g).

Proposition 3.6. The following are true.

(1) The limit of a convergent sequence in a g-metric space is unique.
(2) Every convergent sequence in a g-metric space is a Cauchy sequence.

Proof. (1) Let (£2,g) be a g-metric space and let {xx} C Q be a convergent
sequence. Suppose that x,y € Q are the limits of {zy}. By Definition 3.5
(1), there exists Ny, N3 € N such that

E . .
g(m,xil,...,xi%1)<£ for all i1,...,4, > Ni,

E . .
g(y,xil,...,xi%1)<ﬁ for all 41,...,%, > No.

Set N = max{Ny, No}. If m > N, then by the condition (¢g4) and Lemma
2.7 (3), it follows that

g(‘ray7y7"'7y) Sg(x7xmazma"'7‘IM)+g(xm’y7y7"'7y)

< 9@, Ty Ty ooy Tm) + (00— 1)g(Y, Tony Tony -+ -5 Tin)
-1
I Ul ) R
n n

Since ¢ is arbitrary, g(x,y,v,...,y) = 0. Thus, 2 = y by the condition (g1).
(2) Let (€2,9) be a g-metric space and let {z} C Q be a convergent sequence
with the limit x. By Definition 3.5 (1), there exists N € N such that

3 , .
g, @iy, .y, ) < - for all 41,...,i,_1 > N.

By Lemma 2.7 (4) and the monotonicity condition for the g-metric, it follows
that

=E&.

S|m

n n
g(@iy, .y x4,) < Zg(xik,a:,a:,...,a:) < Z
k=1 =

k=1

Thus, {zx} is a Cauchy sequence in (£, g).
U

Lemma 3.7. Let (2, g) be a g-metric space. Let {x} C Q be a sequence and x € ).
The following are equivalent.

(1) {zx} L .

(2) For a given e > 0, there exists N € N such that zy, € By(z,€) for allk > N.
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(3) lim  g(zk,- Tk, @y...,x) =0 for a fized 1 < s < n—1. That
K1,eeey ks—00 " N s
s times
s, for all € > 0, there exists N € N such that ky,..., ks > N implies
G Xhys ey Tl y Ty oo, ) < E.

Proof. ((1) <= (2)) It is clear by the definition of convergence.
((2) = (3)) Assume that for a given € > 0, there exists N € N such that k > N

implies z, € By (x, E), ie, g(x,xp,...,zK) < ‘o k1,...,ks > N, then by Lemma
s s
S
2.7 (4), we have that g(xg,,..., Tk, Z,...,2) < Zg(x,xkj,...,xkj) <e.
j=1

((3) = (2)) Let € > 0. Assume that there exists N € N such that
5
(1+(s—1)(n—3s))

ki,....,ks > N = g(k1,..., ks, x,...,2) <

If k > N, then by Lemma 2.7 (7) it follows that

g(x, Tk, 25) <A+ (s —=1)(n—9)g(xk, ..., Tp,x, ..., T) < €.
——
s times

O

Lemma 3.8. Let (,9) be a g-metric space. Let {xr} C Q be a sequence. The
following are equivalent.

(1) {x} is Cauchy.

(2) 9(Tk, Tt 1, Tht1s -+ o, Th1) —> 0 as k — oo.
(3) lim g(zg,...,xk, Te,...,x0) =0 for a fited1 <s<n-—1.
kl—00 " N
s times

Proof. ((1) = (2)) It is trivial by Definition 3.5 (2).
((2) = (3)) Without loss of generality, we can assume k& < £. Let ¢ > 0
be given. Then for each m = 0,...,f — k — 1 there exists N,, € N such that

£
I(Thams Thopmet1s - - s Thama1) < =) Let N = max{No,...,N¢_j_1}. Then

by Lemma 2.7 (3),(4), and the conditions (g4), we have that

9Ty T Ty -y 2p) < Sg(T, Ty - ., Tp)
—_———
s times

< 8(9(901@7551@“7 sy Ta1) + 9(Tng1, Ty - -,l“e))
-1

S Szg(xi7xi+17 CIaE 7mi+1) < g,
i=k

forall k > N. If k,£ > N, then g(zg,..., T Tg, ..., 20) < €.

———

s times
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((3) = (1)) Let € > 0 be given. Assume that there exists N € N such that
€

1+ (s+1)(n—s))

EA>N = g(Th,y .y Tk, Toye ooy Xp) <
N n(
s times

If ig,41,...,4, > N, then by Lemma 2.7 (4),(7) it follows that

n
g(xioaxila'-- ;xi”> S Zg(xikaxiow"awio)
k=0
n
< Z(l F+(s+1)(n—=25))g(Tiy,s -y Tipy Tigy---sTig) <E.
k=0 N

s times

O

Definition 3.9. Let (€2, g) be a g-metric space, and let € > 0 be given.

(1) A set AC Qis called an e-net of (€, g) if for each = € Q, there exists a € A
such that = € Bgy(a,e). If the set A is finite then A is called a finite e-net
of (22, 9).

(2) A g-metric space (£, g) is called totally bounded if for every ¢ > 0 there
exists a finite e-net.

(3) A g-metric space (92,g) is called compact if it is complete and totally
bounded.

Definition 3.10. Let (21,¢1) and (22, g2) be g-metric spaces.

(1) A mapping T : Q3 — Qg is said to be continuous at a point © €
provided that for each open ball B,,(T(x),¢), there exists an open ball
By, (x,0) such that T(By, (z,6)) C By, (T(z),¢).

(2) T : Q1 — Qo is said to be continuous if it is continuous at every point of
Q.

(3) T : Q1 — Qy is called a homeomorphism if T is bijective, and T and
T—! are continuous. In this case, the spaces £; and 2y are said to be
homeomorphic.

(4) A property P of g-metric spaces is called a topological invariant if P satisfies
the condition:

If a space 1 has the property P and if ; and 25 are homeomorphic, then
Q5 also has the property P.

Proposition 3.11. Let (Q1,g1) and (2, g2) be g-metric spaces, and let T : Q1 —
Qo be a mapping. Then the following are equivalent.
(1) T is continuous.

(2) For each point x € Q1 and for each sequence {xy} in Q1 converging to x,
{T(z1)} converges to T(x).

Proof. ((1) = (2)) Let x € 4, and let {x} be a sequence in ; converging to x.
Since T : Q; — Q5 is continuous, for a given € > 0 there exists § > 0 such that
T(B,, (,6)) C By, (T(x),e(n —1)~2). Since {z1} —+ z, there is N € N such that
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9@, iy, x, ) <0 foralliq,..., i1 > N. Thus g(z,z;,, ...,z ) < J for each
k=1,...,n— 1. Then the continuity of T" gives rise to the inequality

€
for each k € N. By Lemma 2.7 (3) and (4) we have
9(T (@), T(xi,), ..., T(xi,_,)) < ) 9(T(z,), T(x), ..., T(z))
k=1
n—1
< (n - 1)9(T(5U)7 T(xik)7 7T(xlk)) <e
k=1

Therefore, {T(xy)} converges to T(x).

((2) = (1)) Suppose that T is not continuous, i.e. there exists z € Q; such that
T is not continuous at x. Then there exists ¢ > 0 such that for each § > 0 there is
y € Qq with g(z,y,...,y) < d but g(T(x),T(y),...,T(y)) > e. Then for each k € N
we can take z, € Qy such that g(z, zy, ..., 2x) < 3 but g(T(z), T (2x), ..., T(zx)) >
. Hence, {z)} converges to = but {T'(xy)} does not converges to T'(z), which
contradicts to (2). O
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