DOI QR코드

DOI QR Code

Improvement of Electrochemical Performance of Lithium-ion Secondary Batteries using Double-Layered Thick Cathode Electrodes

  • Phiri, Isheunesu (Department of Chemical and Biological Engineering, Hanbat National University) ;
  • Kim, Jeong-Tae (Department of Chemical and Biological Engineering, Hanbat National University) ;
  • Kennedy, Ssendagire (Department of Chemical and Biological Engineering, Hanbat National University) ;
  • Ravi, Muchakayala (Department of Chemical and Biological Engineering, Hanbat National University) ;
  • Lee, Yong Min (Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST)) ;
  • Ryou, Myung-Hyun (Department of Chemical and Biological Engineering, Hanbat National University)
  • 투고 : 2020.12.27
  • 심사 : 2022.02.14
  • 발행 : 2022.02.28

초록

Various steps in the electrode production process, such as slurry mixing, slurry coating, drying, and calendaring, directly affect the quality and, consequently, mechanical properties and electrochemical performance of electrodes. Herein, a new method of slurry coating is developed: Double-coated electrode. Contrary to single-coated electrode, the cathode is prepared by double coating, wherein each coat is of half the total loading mass of the single-coated electrode. Each coat is dried and calendared. It is found that the double-coated electrode possesses more uniform pore distribution and higher electrode density and allows lesser extent of particle segregation than the single-coated electrode. Consequently, the double-coated electrode exhibits higher adhesion strength (74.7 N m-1) than the single-coated electrode (57.8 N m-1). Moreover, the double-coated electrode exhibits lower electric resistance (0.152 Ω cm-2) than the single-coated electrode (0.177 Ω cm-2). Compared to the single-coated electrode, the double-coated electrode displays higher electrochemical performance by exhibiting better rate capability, especially at higher C rates, and higher long-term cycling performance. Despite its simplicity, the proposed method allows effective electrode preparation by facilitating high electrochemical performance and is applicable for the large-scale production of high-energy-density electrodes.

키워드

과제정보

This research was supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (NRF-2021R1|1A3059728). This research was also supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (No.2018R1A6A1A03026005) and by the Technology Innovation Program (No. 20015759) funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea). This results was supported by "Regional Innovation Strategy (RIS)" through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (MOE) (2021RIS-004).

참고문헌

  1. J. Zheng, M. H. Engelhard, D. Mei, S. Jiao, B. J. Polzin, J.-G. Zhang, and W. Xu, Electrolyte additive enabled fast charging and stable cycling lithium metal batteries, Nat. Energy, 2(3), 1-8, (2017).
  2. J. Liu, Z. Bao, Y. Cui, E. J. Dufek, J. B. Goodenough, P. Khalifah, Q. Li, B. Y. Liaw, P. Liu, and A. Manthiram, Pathways for practical high-energy long-cycling lithium metal batteries, Nat. Energy, 4(3), 180-186, (2019). https://doi.org/10.1038/s41560-019-0338-x
  3. R. Xu, X.-B. Cheng, C. Yan, X.-Q. Zhang, Y. Xiao, C.-Z. Zhao, J.-Q. Huang, and Q. Zhang, Artificial interphases for highly stable lithium metal anode, Matter, 1(2), 317-344, (2019). https://doi.org/10.1016/j.matt.2019.05.016
  4. M. H. Braga, N. S. Grundish, A. J. Murchison, and J. B. Goodenough, Alternative strategy for a safe rechargeable battery, Energy Environm. Sci., 10(1), 331-336, (2017). https://doi.org/10.1039/c6ee02888h
  5. D. Jin, Y. Roh, T. Jo, M. H. Ryou, H. Lee, and Y. M. Lee, Robust cycling of ultrathin Li metal enabled by nitrate?preplanted Li powder composite, Adv. Energy Mater., 11(18), 2003769, (2021). https://doi.org/10.1002/aenm.202003769
  6. S.-J. Cho, D.-E. Yu, T. P. Pollard, H. Moon, M. Jang, O. Borodin, and S.-Y. Lee, Nonflammable lithium metal full cells with ultra-high energy density based on coordinated carbonate electrolytes, iScience, 23(2), 100844, (2020). https://doi.org/10.1016/j.isci.2020.100844
  7. R. E. Garcia, and Y.-M. Chiang, Spatially resolved modeling of microstructurally complex battery architectures, J. Electrochem. Soc., 154(9), A856, (2007). https://doi.org/10.1149/1.2754072
  8. V. Ramadesigan, P. W. Northrop, S. De, S. Santhanagopalan, R. D. Braatz, and V. R. Subramanian, Modeling and simulation of lithium-ion batteries from a systems engineering perspective, J. Electrochem. Soc., 159(3), R31, (2012). https://doi.org/10.1149/2.018203jes
  9. Y. Sheng, C. R. Fell, Y. K. Son, B. M. Metz, J. Jiang, and B. C. Church, Effect of calendering on electrode wettability in lithium-ion batteries, Front. Energy Res., 2, 56, (2014).
  10. M. Singh, J. Kaiser, and H. Hahn, Thick electrodes for high energy lithium ion batteries, J. Electrochem. Soc., 162(7), A1196, (2015). https://doi.org/10.1149/2.0401507jes
  11. M. Singh, J. Kaiser, and H. Hahn, A systematic study of thick electrodes for high energy lithium ion batteries, J. Electroanal. Chem., 782, 245-249, (2016). https://doi.org/10.1016/j.jelechem.2016.10.040
  12. Y. Kuang, C. Chen, D. Kirsch, and L. Hu, Thick electrode batteries: principles, opportunities, and challenges, Adv. Energy Mater., 9(33), 1901457, (2019). https://doi.org/10.1002/aenm.201901457
  13. M. Baunach, S. Jaiser, S. Schmelzle, H. Nirschl, P. Scharfer, and W. Schabel, Delamination behavior of lithium-ion battery anodes: Influence of drying temperature during electrode processing, Dry. Technol., 34(4), 462-473, (2016). https://doi.org/10.1080/07373937.2015.1060497
  14. S. Jaiser, L. Funk, M. Baunach, P. Scharfer, and W. Schabel, Experimental investigation into battery electrode surfaces: The distribution of liquid at the surface and the emptying of pores during drying, J. Colloid Interf. Sci., 494, 22-31, (2017). https://doi.org/10.1016/j.jcis.2017.01.063
  15. F. Huttner, W. Haselrieder, and A. Kwade, The influence of different post?drying procedures on remaining water content and physical and electrochemical properties of lithium?ion batteries, Energy Technol., 8(2), 1900245, (2020). https://doi.org/10.1002/ente.201900245
  16. J. Kumberg, W. Bauer, J. Schmatz, R. Diehm, M. Tonsmann, M. Muller, K. Ly, P. Scharfer, and W. Schabel, Reduced drying time of anodes for lithium?ion batteries through simultaneous multilayer coating, Energy Technol., 9(10), 2100367, (2021). https://doi.org/10.1002/ente.202100367
  17. M. Muller, L. Pfaffmann, S. Jaiser, M. Baunach, V. Trouillet, F. Scheiba, P. Scharfer, W. Schabel, and W. Bauer, Investigation of binder distribution in graphite anodes for lithium-ion batteries, J. Power Sources, 340, 1-5, (2017). https://doi.org/10.1016/j.jpowsour.2016.11.051
  18. B. G. Westphal, and A. Kwade, Critical electrode properties and drying conditions causing component segregation in graphitic anodes for lithium-ion batteries, J. Energy Storage, 18, 509-517, (2018). https://doi.org/10.1016/j.est.2018.06.009
  19. W. Wang, H. Qi, P. Liu, Y. Zhao, and H. Chang, Numerical simulation of densification of Cu-Al mixed metal powder during axial compaction, Metals, 8(7), 537, (2018). https://doi.org/10.3390/met8070537
  20. H. Staf, P. Lindskog, D. C. Andersson, and P.-L. Larsson, On the influence of material parameters in a complex material model for powder compaction, J. Mater. Eng. Perform., 25(10), 4408-4415, (2016). https://doi.org/10.1007/s11665-016-2294-y
  21. L.-C. Chen, D. Liu, T.-J. Liu, C. Tiu, C.-R. Yang, W.-B. Chu, and C.-C. Wan, Improvement of lithium-ion battery performance using a two-layered cathode by simultaneous slot-die coating, J. Energy Storage, 5, 156-162, (2016). https://doi.org/10.1016/j.est.2015.12.008
  22. D. Liu, L. C. Chen, T. J. Liu, W. B. Chu, and C. Tiu, Improvement of lithium?ion battery performance by two?layered slot-die coating operation, Energy Technol., 5(8), 1235-1241, (2017). https://doi.org/10.1002/ente.201600536
  23. S. T. Taleghani, B. Marcos, K. Zaghib, and G. Lantagne, The effect of structural properties of a two-layered electrode on the Li-ion battery polarization, J. Electrochem. Soc., 166(2), A225, (2019). https://doi.org/10.1149/2.0681902jes
  24. J. Ott, B. Volker, Y. Gan, R. M. McMeeking, and M. Kamlah, A micromechanical model for effective conductivity in granular electrode structures, Acta Mech. Sin., 29(5), 682-698, (2013). https://doi.org/10.1007/s10409-013-0070-x
  25. H. Bockholt, M. Indrikova, A. Netz, F. Golks, and A. Kwade, The interaction of consecutive process steps in the manufacturing of lithium-ion battery electrodes with regard to structural and electrochemical properties, J. Power Sources, 325, 140-151, (2016). https://doi.org/10.1016/j.jpowsour.2016.05.127
  26. T. Yoon, S. Park, J. Mun, J. H. Ryu, W. Choi, Y.-S. Kang, J.-H. Park, and S. M. Oh, Failure mechanisms of LiNi0.5Mn1.5O4 electrode at elevated temperature, J. Power Sources, 215, 312-316, (2012). https://doi.org/10.1016/j.jpowsour.2012.04.103
  27. S. Choi, J. Kim, M. Eom, X. Meng, and D. Shin, Application of a carbon nanotube (CNT) sheet as a current collector for all-solid-state lithium batteries, J. Power Sources, 299, 70-75, (2015). https://doi.org/10.1016/j.jpowsour.2015.08.081
  28. J.-H. Kim, S. C. Woo, M.-S. Park, K. J. Kim, T. Yim, J.-S. Kim, and Y.-J. Kim, Capacity fading mechanism of LiFePO4-based lithium secondary batteries for stationary energy storage, J. Power Sources, 229, 190-197, (2013). https://doi.org/10.1016/j.jpowsour.2012.12.024
  29. F. Durst, R. Haas, and W. Interthal, The nature of flows through porous media, J. Non-Newton. Fluid Mech., 22(2), 169-189, (1987). https://doi.org/10.1016/0377-0257(87)80034-4
  30. C. J. Bae, C. K. Erdonmez, J. W. Halloran, and Y. M. Chiang, Design of battery electrodes with dual?scale porosity to minimize tortuosity and maximize performance, Adv. Mater., 25(9), 1254-1258, (2013). https://doi.org/10.1002/adma.201204055
  31. B. Tran, I. O. Oladeji, Z. Wang, J. Calderon, G. Chai, D. Atherton, and L. Zhai, Adhesive PEG-based binder for aqueous fabrication of thick Li4Ti5O12 electrode, Electrochim. Acta, 88, 536-542, (2013). https://doi.org/10.1016/j.electacta.2012.10.139
  32. G. Liu, H. Zheng, S. Kim, Y. Deng, A. Minor, X. Song, and V. Battaglia, Effects of various conductive additive and polymeric binder contents on the performance of a lithium-ion composite cathode, J. Electrochem. Soc., 155(12), A887, (2008). https://doi.org/10.1149/1.2976031
  33. H. Zheng, L. Tan, G. Liu, X. Song, and V. S. Battaglia, Calendering effects on the physical and electrochemical properties of Li [Ni1/3Mn1/3Co1/3] O2 cathode, J. Power Sources, 208, 52-57, (2012). https://doi.org/10.1016/j.jpowsour.2012.02.001
  34. S. J. Babinec, H. Tang, G. Meyers, S. Hughes, and A. Talik, Composite cathode structure/property relationships, ECS Trans., 2(8), 93, (2007). https://doi.org/10.1149/1.2424292
  35. H. Dreger, W. Haselrieder, and A. Kwade, Influence of dispersing by extrusion and calendering on the performance of lithium-ion battery electrodes, J. Energy Storage, 21, 231-240, (2019). https://doi.org/10.1016/j.est.2018.11.028
  36. B. Vijayaraghavan, D. R. Ely, Y.-M. Chiang, R. Garcia-Garcia, and R. E. Garcia, An analytical method to determine tortuosity in rechargeable battery electrodes, J. Electrochem. Soc., 159(5), A548, (2012). https://doi.org/10.1149/2.jes113224
  37. G. Sikha, B. N. Popov, and R. E. White, Effect of porosity on the capacity fade of a lithium-ion battery: Theory, J. Electrochem. Soc., 151(7), A1104, (2004). https://doi.org/10.1149/1.1759972
  38. B. Son, M.-H. Ryou, J. Choi, S.-H. Kim, J. M. Ko, and Y. M. Lee, Effect of cathode/anode area ratio on electrochemical performance of lithium-ion batteries, J. Power Sources, 243, 641-647, (2013). https://doi.org/10.1016/j.jpowsour.2013.06.062