DOI QR코드

DOI QR Code

A LiPF6-LiFSI Blended-Salt Electrolyte System for Improved Electrochemical Performance of Anode-Free Batteries

  • Choi, Haeyoung (Next Generation Battery Research Center, Korea Electrotechnology Research Institute) ;
  • Bae, YeoJi (Next Generation Battery Research Center, Korea Electrotechnology Research Institute) ;
  • Lee, Sang-Min (Next Generation Battery Research Center, Korea Electrotechnology Research Institute) ;
  • Ha, Yoon-Cheol (Next Generation Battery Research Center, Korea Electrotechnology Research Institute) ;
  • Shin, Heon-Cheol (School of Materials Science and Engineering, Pusan National University) ;
  • Kim, Byung Gon (Next Generation Battery Research Center, Korea Electrotechnology Research Institute)
  • 투고 : 2021.05.20
  • 심사 : 2021.06.24
  • 발행 : 2022.02.28

초록

ANODE-free Li-metal batteries (AFLMBs) operating with Li of cathode material have attracted enormous attention due to their exceptional energy density originating from anode-free structure in the confined cell volume. However, uncontrolled dendritic growth of lithium on a copper current collector can limit its practical application as it causes fatal issues for stable cycling such as dead Li formation, unstable solid electrolyte interphase, electrolyte exhaustion, and internal short-circuit. To overcome this limitation, here, we report a novel dual-salt electrolyte comprising of 0.2 M LiPF6 + 3.8 M lithium bis(fluorosulfonyl)imide in a carbonate/ester co-solvent with 5 wt% fluoroethylene carbonate, 2 wt% vinylene carbonate, and 0.2 wt% LiNO3 additives. Because the dual-salt electrolyte facilitates uniform/dense Li deposition on the current collector and can form robust/ionic conductive LiF-based SEI layer on the deposited Li, a Li/Li symmetrical cell exhibits improved cycling performance and low polarization for over 200 h operation. Furthermore, the anode-free LiFePO4/Cu cells in the carbonate electrolyte shows significantly enhanced cycling stability compared to the counterparts consisting of different salt ratios. This study shows an importance of electrolyte design guiding uniform Li deposition and forming stable SEI layer for AFLMBs.

키워드

과제정보

B. G. Kim acknowledges partial support from the Korea Electrotechnology Research Institute (KERI) Primary Research Program (21A01009) through the NST (National Research Council of Science & Technology) and from the Technology Development Program to Solve Climate Changes (NRF-2018M1A2A2063343) through the NRF (National Research Foundation of Korea), both funded by the Ministry of Science and ICT. H. Choi thanks Dr. S. Kang at the Research Institute of Industrial Science & Technology (RIST) for the XPS analysis and would like to thank Editage (www.editage.com) for English language editing.

참고문헌

  1. H. Yang, Q. Li, C. Guo, A. Naveed, J. Yang, Y. Nuli, J. Wang, Chem. Commun., 2018, 54(33), 4132-4135. https://doi.org/10.1039/C7CC09942H
  2. Y. Yamada, J. Wang, S. Ko, E. Watanabe, A. Yamada, Nat. Energy, 2019, 4(4), 269-280. https://doi.org/10.1038/s41560-019-0336-z
  3. Z. Wang, K. Yang, Y. Song, H. Lin, K. Li, Y. Cui, L. Yang, F. Pan, Nano Res., 2020, 13(9), 2431-2437. https://doi.org/10.1007/s12274-020-2871-0
  4. X. Cao, X. Ren, L. Zou, M. H. Engelhard, W. Huang, H. Wang, B. E. Matthews, H. Lee, C. Niu, B. W. Arey, Y. Cui, C. Wang, J. Xiao, J. Liu, W. Xu, J.-G. Zhang, Nat. Energy, 2019, 4(9), 796-805. https://doi.org/10.1038/s41560-019-0464-5
  5. J. Lee, S. H. Choi, H. Qutaish, Y. Hyeon, S. A. Han, Y.-U. Heo, D. Whang, J.-W. Lee, J. Moon, M.-S. Park, J. H. Kim, S. X. Dou, Energy Storage Mater., 2021, 37, 315-324. https://doi.org/10.1016/j.ensm.2021.02.019
  6. J. Kim, J. Lee, J. Yun, S. H. Choi, S. A. Han, J. Moon, J. H. Kim, J.-W. Lee, M.-S. Park, Adv. Funct. Mater., 2020, 30(15), 1910538. https://doi.org/10.1002/adfm.201910538
  7. Y. Hyeon, J. Lee, H. Qutaish, S. A. Han, S. H. Choi, S. W. Moon, M.-S. Park, D. Whang, J. H. Kim, Energy Storage Mater., 2020, 33, 95-107. https://doi.org/10.1016/j.ensm.2020.07.015
  8. K. H. Park, D. W. Kang, J.-W. Park, J.-H. Choi, S.-J. Hong, S. H. Song, S.-M. Lee, J. Moon, B. G. Kim, J. Mater. Chem. A, 2021, 9(3), 1822-1834. https://doi.org/10.1039/D0TA09884A
  9. B. G. Kim, D. W. Kang, G. Park, S. H. Park, S.-M. Lee, J. W. Choi, Chem. Eng. J. 2021, 422, 130017. https://doi.org/10.1016/j.cej.2021.130017
  10. D. H. Kim, M. H. Lee, B. G. Kim, S. M. Lee, J. H. Choi, Chem. Commun., 2020, 56(85), 13040-13043. https://doi.org/10.1039/d0cc05141a
  11. Z. Hu, S. Zhang, S. Dong, Q. Li, G. Cui, L. Chen, Chem. Mater., 2018, 30(12), 4039-4047. https://doi.org/10.1021/acs.chemmater.8b00722
  12. Q. Li, J. Chen, L. Fan, X. Kong, Y. Lu, Green Energy Environ., 2016, 1, 18-42. https://doi.org/10.1016/j.gee.2016.04.006
  13. X. Q. Zhang, X. Chen, L. P. Hou, B. Q. Li, X. B. Cheng, J.-Q. Huang, Q. Zhang, ACS Energy Lett., 2019, 4(2), 411-416. https://doi.org/10.1021/acsenergylett.8b02376
  14. R. M. Kasse, N. R. Geise, J. S. Ko, J. Nelson Weker, H.-G. Steinruck, M. F. Toney, J. Mater. Chem. A, 2020, 8(33), 16960-16972. https://doi.org/10.1039/d0ta06020h
  15. M. Liu, Z. Cheng, K. Qian, T. Verhallen, C. Wang, M. Wagemaker, Chem. Mater., 2019, 31(12), 4564-4574. https://doi.org/10.1021/acs.chemmater.9b01325
  16. Z. L. Brown, S. Heiskanen, B. L. Lucht, J. Electrochem. Soc., 2019, 166(12), A2523. https://doi.org/10.1149/2.0991912jes
  17. Q. Liu, G. Yang, S. Liu, M. Han, Z. Wang, L. Chen, ACS Appl. Mater. Interf., 2019, 11(19), 17435-17443. https://doi.org/10.1021/acsami.9b03417
  18. C.-C. Su, M. He, R. Amine, Z. Chen, R. Sahore, N. Dietz Rago, K. Amine, Energy Storage Mater., 2019, 17, 284-292. https://doi.org/10.1016/j.ensm.2018.11.003
  19. X. Shen, Y. Li, T. Qian, J. Liu, J. Zhou, C. Yan, J. B. Goodenough, Nat. Commun., 2019, 10(1), 1-9. https://doi.org/10.1038/s41467-018-07882-8
  20. J. Qian, Y. Li, M. Zhang, R. Luo, F. Wang, Y. Ye, Y. Xing, W. Li, W. Qu, L. Wang, L. Li, Y. Li, F. Wu, R. Chen, Nano Energy, 2019, 60, 866-874. https://doi.org/10.1016/j.nanoen.2019.04.030
  21. K. Qin, K. Holguin, M. Mohammadiroudbari, J. Huang, E. Y. S. Kim, R. Hall, C. Luo, Adv. Funct. Mater., 2021, 31(15), 2009694. https://doi.org/10.1002/adfm.202009694
  22. Q. Wang, H. Wang, J. Wu, M. Zhou, W. Liu, H. Zhou, Nano Energy, 2021, 80, 105516. https://doi.org/10.1016/j.nanoen.2020.105516
  23. D. Y. Wang, A. Xiao, L. Wells, J. R. Dahn, J. Electrochem. Soc., 2014, 162(1), A169. https://doi.org/10.1149/2.0821501jes
  24. L. Zhang, L. Chai, L. Zhang, M. Shen, X. Zhang, V. S. Battaglia, T. Stephenson, H. Zheng, Electrochim. Acta, 2014, 127, 39-44. https://doi.org/10.1016/j.electacta.2014.02.008
  25. G. G. Eshetu, S. Grugeon, G. Gachot, D. Mathiron, M. Armand, S. Laruelle, Electrochim. Acta, 2013, 102, 133-141. https://doi.org/10.1016/j.electacta.2013.03.171
  26. J. Li, Z. Wang, J. Power Sources, 2020, 450, 227648. https://doi.org/10.1016/j.jpowsour.2019.227648
  27. J. Qian, W. A. Henderson, W. Xu, P. Bhattacharya, M. Engelhard, O. Borodin, J.-G. Zhang, Nat. Commun., 2015, 6(1), 1-9.
  28. Q. Wang, Z. Yao, C. Zhao, T. Verhallen, D. P. Tabor, M. Liu, F. Ooms, F. Kang, A. Aspuru-Guzik, Y.-S. Hu, M. Wagemaker, B. Li, Nat. Commun., 2020, 11(1), 1-11. https://doi.org/10.1038/s41467-019-13993-7
  29. E. Cho, J. Mun, O. B. Chae, O. M. Kwon, H.-T. Kim, J. H. Ryu, Y. G. Kim, S. M. Oh, Electrochem. Commun., 2012, 22, 1-3. https://doi.org/10.1016/j.elecom.2012.05.018
  30. Q. Liu, T. L. Dzwiniel, K. Z. Pupek, Z. Zhang, J. Electrochem. Soc., 2019, 166(16), A3959. https://doi.org/10.1149/2.0161916jes
  31. T. T. Hagos, B. Thirumalraj, C.-J. Huang, L. H. Abrha, T. M. Hagos, G. B. Berhe, H. K. Bezabh, J. Cherng, S.-F. Chiu, W.-N. Su, B.-J. Hwang, ACS Appl. Mater. Interf., 2019, 11(10), 9955-9963. https://doi.org/10.1021/acsami.8b21052
  32. G. Yang, Y. Li, S. Liu, S. Zhang, Z. Wang, L. Chen, Energy Storage Mater., 2019, 23, 350-357. https://doi.org/10.1016/j.ensm.2019.04.041
  33. J. Wang, Y. Yamada, K. Sodeyama, C. H. Chiang, Y. Tateyama, A. Yamada, Nat. Commun., 2016, 7(1), 1-9.
  34. Y. Zhu, V. Pande, L. Li, B. Wen, M. S. Pan, D. Wang, Z.-F. Ma, V. Viswanathan, Y.-M. Chiang, Proc. Natl. Acad. Sci. U. S. A., 2020, 117(44), 27195-27203. https://doi.org/10.1073/pnas.2001923117
  35. V. Sharova, A. Moretti, T. Diemant, A. Varzi, R. J. Behm, S. Passerini, J. Power Sources, 2018, 375, 43-52. https://doi.org/10.1016/j.jpowsour.2017.11.045
  36. S. S. Zhang, T. R. Jow, K. Amine, G. L. Henriksen, J. Power Sources, 2002, 107(1), 18-23. https://doi.org/10.1016/S0378-7753(01)00968-5
  37. X. Fan, L. Chen, X. Ji, T. Deng, S. Hou, J. Chen, J. Zheng, F. Wang, J. Jiang, K. Xu, C. Wang, Chem, 2018, 4(1), 174-185. https://doi.org/10.1016/j.chempr.2017.10.017
  38. H.-B. Han, S.-S. Zhou, D.-J. Zhang, S.-W. Feng, L.-F. Li, K. Liu, W.-F. Feng, J. Nie, H. Li, X.-J. Huang, M. Armand, Z.-B. Zhou, J. Power Sources, 2011, 196(7), 3623-3632. https://doi.org/10.1016/j.jpowsour.2010.12.040
  39. D. W. Kang, J. Moon, H.-Y. Choi, H.-C. Shin, B. G. Kim, J. Power Sources, 2021, 490, 229504. https://doi.org/10.1016/j.jpowsour.2021.229504
  40. Z. Xie, Z. Wu, X. An, X. Yue, J. Wang, A. Abudula, G. Guan, Energy Storage Mater., 2020, 32, 386. https://doi.org/10.1016/j.ensm.2020.07.004
  41. S. W. Park, G. Oh, J.-W. Park, Y.-C. Ha, S.-M. Lee, S. Y. Yoon, B. G. Kim, Small, 2019, 15(18), 1900235. https://doi.org/10.1002/smll.201900235
  42. B. G. Kim, J.-N. Lee, D. J. Lee, J.-K. Park, J. W. Choi, ChemSusChem, 2013, 6(3), 443-448. https://doi.org/10.1002/cssc.201200801
  43. Y. Yoo, B. G. Kim, K. Pak, S. J. Han, H.-S. Song, J. W. Choi, S. G. Im, ACS Appl. Mater. Interf., 2015, 7(33), 18849-18855. https://doi.org/10.1021/acsami.5b05720
  44. J. D. Xie, J. Patra, P. Chandra Rath, W. J. Liu, C. Y. Su, S. W. Lee, C. J. Tseng, Y. A. Gandomi, J. K. Chang, J. Power Sources, 2020, 450, 227657. https://doi.org/10.1016/j.jpowsour.2019.227657
  45. B. G. Kim, C. Jo, J. Shin, Y. Mun, J. Lee, J. W. Choi, ACS Nano, 2017, 11(2), 1736-1746. https://doi.org/10.1021/acsnano.6b07635
  46. Q. Shi, Y. Zhong, M. Wu, H. Wang, H. Wang, Proc. Natl. Acad. Sci. U. S. A., 2018, 115(22), 5676-5680. https://doi.org/10.1073/pnas.1803634115
  47. R. Pathak, K. Chen, A. Gurung, K. M. Reza, B. Bahrami, J. Pokharel, A. Baniya, W. He, F. Wu, Y. Zhou, K. Xu, Q. Qiao, Nat. Commun., 2020, 11(1), 1-10. https://doi.org/10.1038/s41467-019-13993-7
  48. F. Single, A. Latz, B. Horstmann, ChemSusChem, 2018, 11, 1950-1955. https://doi.org/10.1002/cssc.201800077