DOI QR코드

DOI QR Code

Ion Migration in Metal Halide Perovskites

  • Nur'aini, Anafi (Chemical Engineering, Kumoh National Institute of Technology) ;
  • Lee, Seokwon (Departments of Applied Chemistry, Kumoh National Institute of Technology) ;
  • Oh, Ilwhan (Departments of Applied Chemistry, Kumoh National Institute of Technology)
  • 투고 : 2021.01.28
  • 심사 : 2021.06.08
  • 발행 : 2022.02.28

초록

Metal halide perovskites are promising photovoltaic materials, but they still have some issues that need to be solved. Hysteresis is a phenomenon that strongly is correlated with ion migration; thus, a fast, easy, and low-temperature method for measuring ion migration is required. Through selective blocking, ion migration can be measured separately, apart from electron migration. In this study, ion migration in metal halide perovskites was measured using a vertical device. At different temperatures, ionic activation energies were obtained for a range of perovskite compositions such as MAPbI3, FAPbI3, CsPbI3, and MAPbBr3. By comparing the measured ionic activation energies with the theoretical values, we conclude that among other possibilities, I- is the migrating ion in MAPbI3, FAPbI3, CsPbI3, and Br- is the migrating in MAPbBr3.

키워드

과제정보

This research was supported by the sabbatical of Kumoh National Institute of Technology.

참고문헌

  1. A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, J. Am. Chem. Soc., 2009, 131(17), 6050-6051. https://doi.org/10.1021/ja809598r
  2. N. R. E. L. (NREL), http://www.nrel.gov/ncpv/images/efficiency_chart.jpg. 2016.
  3. L. Meng, J. You, and Y. Yang, Nat. Commun., 2018, 9(1), 1-4. https://doi.org/10.1038/s41467-017-02088-w
  4. Y. Yuan and J. Huang, Acc. Chem. Res., 2016, 49(2), 286-293. https://doi.org/10.1021/acs.accounts.5b00420
  5. W. Nie, J. C. Blancon, A. J. Neukirch, K. Appavoo, H. Tsai, M. Chhowalla, M. A. Alam, M. Y. Sfeir, C. Katan, J. Even, S. Tretiak, J. J. Crochet, G. Gupta, and A. D. Mohite, Nat. Commun., 2016, 7(1), 1-9.
  6. Z. Xiao, Y. Yuan, Y. Shao, Q. Wang, Q. Dong, C. Bi, P. Sharma, A. Gruverman, and J. Huang, Nat. Mater., 2015, 14(2), 193-197. https://doi.org/10.1038/nmat4150
  7. H. J. Snaith, A. Abate, J. M. Ball, G. E. Eperon, T. Leijtens, N. K. Noel, S. D. Stranks, J. T. W. Wang, K. Wojciechowski, and W. Zhang, J. Phys. Chem. Lett., 2014, 5(9), 1511-1515. https://doi.org/10.1021/jz500113x
  8. H. S. Kim and N. G. Park, J. Phys. Chem. Lett., 2014, 5(17), 2927-2934. https://doi.org/10.1021/jz501392m
  9. Y. Shao, Z. Xiao, C. Bi, Y. Yuan, and J. Huang, Nat. Commun., 2014, 5(1), 1-7.
  10. S. H. Kim and D. Lee, J. Phys. Chem. C., 2019, 123(14), 9629-9633. https://doi.org/10.1021/acs.jpcc.9b01770
  11. T. Zhang, H. Chen, Y. Bai, S. Xiao, L. Zhu, C. Hu, Q. Xue, and S. Yang, Nano Energy., 2016, 26, 620-630. https://doi.org/10.1016/j.nanoen.2016.05.052
  12. Y. Yuan, J. Chae, Y. Shao, Q. Wang, Z. Xiao, A. Centrone, and J. Huang, Adv. Energy Mater., 2015, 5(15), 1500615. https://doi.org/10.1002/aenm.201500615
  13. T. Y. Yang, G. Gregori, N. Pellet, M. Gratzel, and J. Maier, Angew. Chemie - Int. Ed., 2015, 54(27), 7905-7910. https://doi.org/10.1002/anie.201500014
  14. D. Klotz, G. Tumen-Ulzii, C. Qin, T. Matsushima, and C. Adachi, RSC Adv., 2019, 9(57), 33436-33445. https://doi.org/10.1039/c9ra07048f
  15. T. Zhang, X. Meng, Y. Bai, S. Xiao, C. Hu, Y. Yang, H. Chen, and S. Yang, J. Mater. Chem. A., 2017, 5(3), 1103-1111. https://doi.org/10.1039/C6TA09687E
  16. Y. C. Zhao, W. K. Zhou, X. Zhou, K. H. Liu, D. P. Yu, and Q. Zhao, Light Sci. Appl., 2017, 6(5), e16243-e16243. https://doi.org/10.1038/lsa.2016.243
  17. W. Zhou, Y. Zhao, X. Zhou, R. Fu, Q. Li, Y. Zhao, K. Liu, D. Yu, and Q. Zhao, J. Phys. Chem. Lett., 2017, 8(17), 4122-4128. https://doi.org/10.1021/acs.jpclett.7b01851
  18. D. A. Egger, L. Kronik, and A. M. Rappe, Angew. Chem. Int. Ed., 2015, 54(42), 12437-12441. https://doi.org/10.1002/anie.201502544
  19. G. Jang, H. C. Kwon, S. Ma, S. C. Yun, H. Yang, and J. Moon, Adv. Energy Mater., 2019, 9(36), 1901719. https://doi.org/10.1002/aenm.201901719
  20. L. J. Phillips, A. M. Rashed, R. E. Treharne, J. Kay, P. Yates, I. Z. Mitrovic, A. Weerakkody, S. Hall, and K. Durose, Sol. Energy Mater. Sol. Cells., 2016, 147, 327-333. https://doi.org/10.1016/j.solmat.2015.10.007
  21. L. K. Ono, E. J. Juarez-Perez, and Y. Qi, ACS Appl. Mater. Interfaces., 2017, 9(36), 30197-30246. https://doi.org/10.1021/acsami.7b06001
  22. G. E. Eperon, D. Bryant, J. Troughton, S. D. Stranks, M. B. Johnston, T. Watson, D. A. Worsley, and H. J. Snaith, J. Phys. Chem. Lett., 2015, 6(1), 129-138. https://doi.org/10.1021/jz502367k
  23. Y. G. Kim, T. Y. Kim, J. H. Oh, K. S. Choi, Y. J. Kim, and S. Y. Kim, Phys. Chem. Chem. Phys., 2017, 19(8), 6257-6263. https://doi.org/10.1039/C6CP08177K
  24. G. E. Eperon, G. M. Paterno, R. J. Sutton, A. Zampetti, A. A. Haghighirad, F. Cacialli, and H. J. Snaith, J. Mater. Chem. A., 2015, 3(39), 19688-19695. https://doi.org/10.1039/C5TA06398A
  25. K. H. Wang, L. C. Li, M. Shellaiah, and K. W. Sun, Sci. Rep., 2017, 7(1), 1-14. https://doi.org/10.1038/s41598-016-0028-x
  26. J. W. Lee, S. G. Kim, J. M. Yang, Y. Yang, and N. G. Park, APL Mater., 2019, 7(4), 041111. https://doi.org/10.1063/1.5085643
  27. B. Yang, C. C. Brown, J. Huang, L. Collins, X. Sang, R. R. Unocic, S. Jesse, S. V. Kalinin, A. Belianinov, J. Jakowski, D. B. Geohegan, B. G. Sumpter, K. Xiao, and O. S. Ovchinnikova, Adv. Funct. Mater., 2017, 27(26), 1700749. https://doi.org/10.1002/adfm.201700749
  28. O. Almora, I. Zarazua, E. Mas-Marza, I. Mora-Sero, J. Bisquert, and G. Garcia-Belmonte, J. Phys. Chem. Lett., 2015, 6(9), 1645-1652. https://doi.org/10.1021/acs.jpclett.5b00480
  29. C. Eames, J. M. Frost, P. R. F. Barnes, B. C. O'Regan, A. Walsh, and M. S. Islam, Nat. Commun., 2015, 6(1), 1-8.
  30. J. M. Azpiroz, E. Mosconi, J. Bisquert, and F. De Angelis, Energy Environ. Sci., 2015, 8(7), 2118-2127. https://doi.org/10.1039/C5EE01265A
  31. Y. Nah, O. Allam, H. S. Kim, J. I. Choi, I. S. Kim. J. Byun, S. O. Kim, S. S. Jang, and D. H. Kim, ACS Nano, 2021, 15(1), 1486-1496. https://doi.org/10.1021/acsnano.0c08897
  32. G. Y. Kim, A. Senocrate, Y. Wang, D. and Moia, J. Maier, Angew. Chem. Int. Ed., 2021, 60, 820-826. https://doi.org/10.1002/anie.202005853
  33. J. Haruyama, K. Sodeyama, L. Han, and Y. Tateyama, J. Am. Chem. Soc., 2015, 137(32), 10048-10051. https://doi.org/10.1021/jacs.5b03615
  34. S. Meloni, T. Moehl, W. Tress, M. Franckeviius, M. Saliba, Y. H. Lee, P. Gao, M. K. Nazeeruddin, S. M. Zakeeruddin, U. Rothlisberger, and M. Graetzel, Nat. Commun., 2016, 7(1), 1-9.
  35. S. R. G. Balestra, J. M. Vicent-Luna, S. Calero, S. Tao, and J. A. Anta, J. Mater. Chem. A., 2020, 8(23), 11824-11836. https://doi.org/10.1039/d0ta03200j