과제정보
This work was supported by a 2-Year Research Grant of Pusan National University.
참고문헌
- Mao AS and Mooney DJ (2015) Regenerative medicine: Current therapies and future directions. Proc Natl Acad Sci U S A 112, 14452-14459 https://doi.org/10.1073/pnas.1508520112
- Hu C, Zhao L, Zhang L, Bao Q and Li L (2020) Mesenchymal stem cell-based cell-free strategies: safe and effective treatments for liver injury. Stem Cell Res Ther 11, 377 https://doi.org/10.1186/s13287-020-01895-1
- Stoltz JF, de Isla N, Li YP et al (2015) Stem cells and regenerative medicine: myth or reality of the 21th century. Stem Cells Int 2015, 734731 https://doi.org/10.1155/2015/734731
- Song BW and Hwang KC (2019) Developmental strategy of stem cell therapy for improving clinically-hostile environment. Ann Stem Cell Res Ther 3, 1033
- Salazar-Noratto GE, Luo G, Denoeud C et al (2019) Understanding and leveraging cell metabolism to enhance mesenchymal stem cell transplantation survival in tissue engineering and regenerative medicine applications. Stem Cells 38, 22-33 https://doi.org/10.1002/stem.3079
- Kurtz A (2008) Mesenchymal stem cell delivery routes and fate. Int J Stem Cells 1, 1-7 https://doi.org/10.15283/ijsc.2008.1.1.1
- Volarevic V, Markovic BS, Gazdic M et al (2018) Ethical and safety issues of stem cell-based therapy. Int J Med Sci 15, 36-45 https://doi.org/10.7150/ijms.21666
- Prockop DJ, Brenner M, Fibbe WE et al (2010) Defining the risks of mesenchymal stromal cell therapy. Cytotherapy 12, 576-578 https://doi.org/10.3109/14653249.2010.507330
- Toma C, Pittenger MF, Cahill KS, Byrne BJ and Kessler PD (2002) Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation 105, 93-98 https://doi.org/10.1161/hc0102.101442
- McGinley LM, McMahon J, Stocca A et al (2013) Mesenchymal stem cell survival in the infarcted heart is enhanced by lentivirus vector-mediated heat shock protein 27 expression. Hum Gene Ther 24, 840-851 https://doi.org/10.1089/hum.2011.009
- Chia YC, Anjum CE, Yee HR et al (2020) Stem cell therapy for neurodegenerative diseases: how do stem cells bypass the blood-brain barrier and home to the brain? Stem Cells Int 2020, 8889061
- Baglio SR, Pegtel DM and Baldini N (2012) Mesenchymal stem cell secreted vesicles provide novel opportunities in (stem) cell-free therapy. Front Physiol 6, 359 https://doi.org/10.3389/fphys.2015.00359
- Makarova J, Turchinovich A, Shkurnikov M and Tonevitsky A (2021) Extracellular miRNAs and cell-cell communication: problems and prospects. Trends Biochem Sci 46, 640-651 https://doi.org/10.1016/j.tibs.2021.01.007
- Song BW, Lee CY, Kim R et al (2021) Multiplexed targeting of miRNA-210 in stem cell-derived extracellular vesicles promotes selective regeneration in ischemic hearts. Exp Mol Med 53, 695-708 https://doi.org/10.1038/s12276-021-00584-0
- Thery C, Witwer KW, Aikawa et al (2018) Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles 7, 1535750 https://doi.org/10.1080/20013078.2018.1535750
- Crescitelli R, Lasser C, Szabo TG et al (2013) Distinct RNA profiles in subpopulations of extracellular vesicles: apoptotic bodies, microvesicles and exosomes. J Extracell Vesicles 2, 20677 https://doi.org/10.3402/jev.v2i0.20677
- Jeppesen DK, Fenix AM, Franklin JL et al (2019) Reassessment of exosome composition. Cell 177, 428-445.e18 https://doi.org/10.1016/j.cell.2019.02.029
- Doyle LM and Wang MZ (2019) Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis. Cells 8, 727 https://doi.org/10.3390/cells8070727
- O'Brien K, Breyne K, Ughetto S, Laurent LC and Breakefield XO (2020) RNA delivery by extracellular vesicles in mammalian cells and its applications. Nat Rev Mol Cell Biol 21, 585-606 https://doi.org/10.1038/s41580-020-0251-y
- Kim HS, Choi DY, Yun SJ et al (2012) Proteomic analysis of microvesicles derived from human mesenchymal stem cells. J Proteome Res 11, 839-849 https://doi.org/10.1021/pr200682z
- Lai RC, Tan SS, Teh BJ et al (2012) Proteolytic potential of the MSC exosome proteome: implications for an exosome-mediated delivery of therapeutic proteasome. Int J Proteomics 2012, 971907 https://doi.org/10.1155/2012/971907
- Wei Z, Batagov AO, Schinelli S et al (2017) Coding and noncoding landscape of extracellular RNA released by human glioma stem cells. Nat Commun 8, 1145 https://doi.org/10.1038/s41467-017-01196-x
- de la Cuesta F, Passalacqua I, Rodor J, Bhushan R, Denby L and Baker AH (2019) Extracellular vesicle cross-talk between pulmonary artery smooth muscle cells and endothelium during excessive TGF-β signalling: implications for PAH vascular remodelling. Cell Commun Signal 17, 143 https://doi.org/10.1186/s12964-019-0449-9
- Chen L, Wang Y, Li S et al (2020) Exosomes derived from GDNF-modified human adipose mesenchymal stem cells ameliorate peritubular capillary loss in tubulointerstitial fibrosis by activating the SIRT1/eNOS signaling pathway. Theranostics 10, 9425-9442 https://doi.org/10.7150/thno.43315
- Zhang X, Jiang Y, Huang Q et al (2021) Exosomes derived from adipose-derived stem cells overexpressing glyoxalase-1 protect endothelial cells and enhance angiogenesis in type 2 diabetic mice with limb ischemia. Stem Cell Res Ther 12, 403 https://doi.org/10.1186/s13287-021-02475-7
- Dykxhoorn DM, Novina CD and Sharp PA (2003) Killing the messenger: short RNAs that silence gene expression. Nat Rev Mol Cell Biol 4, 457-467 https://doi.org/10.1038/nrm1129
- Kim D, Chang HR and Baek D (2017) Rules for functional microRNA targeting. BMB Rep 50, 554-559 https://doi.org/10.5483/BMBRep.2017.50.11.179
- Friedman RC, Farh KK, Burge CB and Bartel DP (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19, 92-105 https://doi.org/10.1101/gr.082701.108
- Makarova JA, Shkurnikov MU, Wicklein D et al (2016) Intracellular and extracellular microRNA: an update on localization and biological role. Prog Histochem Cytochem 51, 33-49 https://doi.org/10.1016/j.proghi.2016.06.001
- Izarra A, Moscoso I, Levent E et al (2014) miR-133a enhances the protective capacity of cardiac progenitors cells after myocardial infarction. Stem Cell Rep 3, 1029-1042 https://doi.org/10.1016/j.stemcr.2014.10.010
- Zhou J, Li YS, Nguyen P et al (2013) Regulation of vascular smooth muscle cell turnover by endothelial cell-secreted microRNA-126: role of shear stress. Circ Res 113, 40-51 https://doi.org/10.1161/CIRCRESAHA.113.280883
- Rader DJ and Parmacek MS (2012) Secreted miRNAs suppress atherogenesis. Nat Cell Biol 14, 233-235 https://doi.org/10.1038/ncb2452
- Morel L, Regan M, Higashimori H et al (2013) Neuronal exosomal miRNA-dependent translational regulation of astroglial glutamate transporter GLT1. J Biol Chem 288, 7105-7116 https://doi.org/10.1074/jbc.M112.410944
- Ying W, Riopel M, Bandyopadhyay G et al (2017) Adipose tissue macrophage-derived exosomal miRNAs can modulate in vivo and in vitro insulin sensitivity. Cell 171, 372-384.e12 https://doi.org/10.1016/j.cell.2017.08.035
- Usman WM, Pham TC, Kwok YY et al (2018) Efficient RNA drug delivery using red blood cell extracellular vesicles. Nat Commun 9, 2359 https://doi.org/10.1038/s41467-018-04791-8
- Lou G, Song X, Yang F et al (2015) Exosomes derived from miR-122-modified adipose tissue-derived MSCs increase chemosensitivity of hepatocellular carcinoma. J Hematol Oncol 8, 122 https://doi.org/10.1186/s13045-015-0220-7
- Yu T, Zhao C, Hou S, Zhou W, Wang B and Chen Y (2019) Exosomes secreted from miRNA-29b-modified mesenchymal stem cells repaired spinal cord injury in rats. Braz J Med Biol Res 52, e8735 https://doi.org/10.1590/1414-431x20198735
- Lamichhane TN, Jeyaram A, Patel DB et al (2016) Oncogene knockdown via active loading of small RNAs into extracellular vesicles by sonication. Cell Mol Bioeng 9, 315-324 https://doi.org/10.1007/s12195-016-0457-4
- Liang G, Zhu Y, Ali DJ et al (2020) Engineered exosomes for targeted co-delivery of miR-21 inhibitor and chemotherapeutics to reverse drug resistance in colon cancer. J Nanobiotechnology 18, 10 https://doi.org/10.1186/s12951-019-0563-2
- Fu S, Wang Y, Xia X and Zheng JC (2020) Exosome engineering: current progress in cargo loading and targeted delivery. NanoImpact 20, 100261 https://doi.org/10.1016/j.impact.2020.100261
- Munir J, Yoon JK and Ryu S (2020) Therapeutic miRNA-enriched extracellular vesicles: current approaches and future prospects. Cells 9, 2271 https://doi.org/10.3390/cells9102271
- Zhang D, Lee H, Zhu Z, Minhas JK and Jin Y (2017) Enrichment of selective miRNAs in exosomes and delivery of exosomal miRNAs in vitro and in vivo. Am J Physiol Lung Cell Mol Physiol 312, L110-L121 https://doi.org/10.1152/ajplung.00423.2016
- Naseri Z, Oskuee RK, Forouzandeh-Moghadam M and Jaafari MR (2020) Delivery of LNA-antimiR-142-3p by mesenchymal stem cells-derived exosomes to breast cancer stem cells reduces tumorigenicity. Stem Cell Rev Rep 16, 541-556 https://doi.org/10.1007/s12015-019-09944-w
- Jeyaram A, Lamichhane TN, Wang S et al (2020) Enhanced loading of functional miRNA cargo via pH gradient modification of extracellular vesicles. Mol Ther 28, 975-985 https://doi.org/10.1016/j.ymthe.2019.12.007
- Peng Y, Zhao JL, Peng ZY, Xu WF and Yu GL (2020) Exosomal miR-25-3p from mesenchymal stem cells alleviates myocardial infarction by targeting pro-apoptotic proteins and EZH2. Cell Death Dis 11, 317 https://doi.org/10.1038/s41419-020-2545-6
- Ferguson SW, Wang J, Lee CJ et al (2018) The microRNA regulatory landscape of MSC-derived exosomes: a systems view. Sci Rep 8, 1419 https://doi.org/10.1038/s41598-018-19581-x
- Pan W, Xu X, Zhang M, Song X (2021) Human urine-derived stem cell-derived exosomal miR-21-5p promotes neurogenesis to attenuate Rett syndrome via the EPha4/TEK axis. Lab Invest 101, 824-836 https://doi.org/10.1038/s41374-021-00574-w
- Huang L, Fu C, Xiong F, He C and Wei Q (2021) Stem cell therapy for spinal cord injury. Cell Transplant 30, 963689721989266
- Hu J, Zeng L, Huang J, Wang G and Lu H (2015) miR-126 promotes angiogenesis and attenuates inflammation after contusion spinal cord injury in rats. Brain Res 1608, 191-202 https://doi.org/10.1016/j.brainres.2015.02.036
- Huang JH, Xu Y, Yin XM and Lin FY (2020) Exosomes derived from miR-126-modified MSCs promote angiogenesis and neurogenesis and attenuate apoptosis after spinal cord injury in rats. Neuroscience 424, 133-145 https://doi.org/10.1016/j.neuroscience.2019.10.043