DOI QR코드

DOI QR Code

The Association Between Neurodegenerative Diseases and Development of Type 2 Diabetes

신경퇴행성 질환과 제2형 당뇨병 발생의 연관성

  • Sang-Woo, Koo (Department of Psychiatry, Keimyung University School of Medicine) ;
  • Hojun, Lee (Department of Psychiatry, Keimyung University School of Medicine) ;
  • Yang-Tae, Kim (Department of Psychiatry, Keimyung University School of Medicine) ;
  • Hee-Cheol, Kim (Department of Psychiatry, Keimyung University School of Medicine)
  • 구상우 (계명대학교 의과대학 정신건강의학교실) ;
  • 이호준 (계명대학교 의과대학 정신건강의학교실) ;
  • 김양태 (계명대학교 의과대학 정신건강의학교실) ;
  • 김희철 (계명대학교 의과대학 정신건강의학교실)
  • Received : 2022.07.20
  • Accepted : 2022.10.25
  • Published : 2022.12.31

Abstract

Objectives : A growing body of evidence links type 2 diabetes (T2D) with a neurodegenerative disease (ND) such as Alzheimer's disease and Parkinson's disease. The purpose of this study is to investigate the relationship between NDs and the development of T2D by comparing the incidence of T2D in a group of various NDs (ND group) and control group. Methods : A population-based 10-year follow-up study was conducted using the Korean National Health Information Database for 2002-2015. We used a retrospective cohort study design to investigate the association of ND with T2D occurrence. The study population included ND (n=8,814) and control (n=37,970) groups, all aged 60 years or over. The Kaplan-Meier method was used to estimate the risk of developing T2D as a function of time. Cox proportional hazards regression models were used to evaluate the relationship between ND and T2D. Results : T2D was developed in a significantly higher percentage of patients in the ND group (53.6%) than in the control group (44.7%). The ND group increased the risk of T2D (HR, 1.43; 95% CI, 1.38-1.47). About one-third of patients in both groups were additionally diagnosed with another ND before the occurrence of T2D during a 10-year follow-up period. When compared to those who did not have another ND during the follow-up period, the incidence of T2D in those who were additionally diagnosed with another ND was higher in both the ND and control groups. Conclusions : The ND group had about 1.4 times higher risk of developing T2D than the control group. Our results showed a positive association between ND and T2D.

연구목적 많은 선행 연구들은 제2형 당뇨병과 알츠하이머병이나 파킨슨병과 같은 단일의 신경퇴행성 질환과의 연관성을 보고하고 있다. 본 연구는 다양한 신경퇴행성 질환을 가진 집단(ND군)과 대조군 간에 제2형 당뇨병의 발생률을 조사하여 신경퇴행성 질환과 제2형 당뇨병 발생의 연관성을 조사하고자 한다. 방 법 국민건강보험공단 맞춤형 데이터베이스 자료를 이용하여 60-84세의 노인 인구집단을 ND군과 대조군으로 분류한 뒤 이들을 후향적으로 10년간 추적관찰 하면서 제2형 당뇨병의 발생 빈도와 발생 시까지 생존시간을 평가하였다. 연구 대상자는 ND군 8,814명과 대조군 37,970명이었다. 카플란-마이어 생존 분석과 다변량 콕스 비례 위험 모형을 이용하여 생존 곡선과 위험비를 구하였다. 결 과 ND군에서 제2형 당뇨병의 발생 비율(53.6%)이 대조군(44.7%)에 비해 유의하게 높았다. ND군은 대조군과 비교하여 제2형 당뇨병의 발생 위험성이 1.4배 증가하였다(HR, 1.43; 95% CI, 1.38-1.47). 연구 대상자 중 약 1/3은 10년의 추적 기간 동안에 제2형 당뇨병이 발생하기 전에 다른 신경퇴행성 질환들이 추가로 진단되었다. 두 군 모두에서, 추적 기간 동안에 다른 신경퇴행성 질환이 추가로 진단된 경우에 그렇지 않은 경우보다 제2형 당뇨병의 발생률이 더 높았다. 결 론 ND군은 대조군에 비해 제2형 당뇨병의 발생 위험도가 약 1.4배 높았으며 신경퇴행성 질환과 제2형 당뇨병 발생은 정적인 상관관계를 보였다.

Keywords

Acknowledgement

이 연구는 2020년도 계명대학교 동산의료원 연구비의 지원으로 수행되었음.

References

  1. Moltedo O, Remondelli P, Amodio G. The mitochondria-endoplasmic reticulum contacts and their critical role in aging and age-associated diseases. Front Cell Dev Biol 2019;7:172. https://doi.org/10.3389/fcell.2019.00172
  2. Nandi A, Yan LJ, Jana CK, Das N. Role of catalase in oxidative stress- and age-associated degenerative diseases. Oxid Med Cell Longev 2019;2019:9613090.
  3. Ghemrawi R, Khair M. Endoplasmic reticulum stress and unfolded protein response in neurodegenerative diseases. Int J Mol Sci 2020;21:6127. https://doi.org/10.3390/ijms21176127
  4. Kagan BL, Azimov R, Azimova R. Amyloid peptide channels. J Membr Biol 2004;202:1-10. https://doi.org/10.1007/s00232-004-0709-4
  5. Scheuner D, Kaufman RJ. The unfolded protein response: a pathway that links insulin demand with beta-cell failure and diabetes. Endocr Rev 2008;29:317-333. https://doi.org/10.1210/er.2007-0039
  6. Morsi M, Maher A, Aboelmagd O, Johar D, Bernstein L. A shared comparison of diabetes mellitus and neurodegenerative disorders. J Cell Biochem 2018;119:1249-1256. https://doi.org/10.1002/jcb.26261
  7. Qiu WQ, Folstein MF. Insulin, insulin-degrading enzyme and amyloid-beta peptide in Alzheimer's disease: review and hypothesis. Neurobiol Aging 2006;27:190-198. https://doi.org/10.1016/j.neurobiolaging.2005.01.004
  8. Kim HG. Cognitive dysfunctions in individuals with diabetes mellitus. Yeungnam Univ J Med 2019;36:183-191. https://doi.org/10.12701/yujm.2019.00255
  9. Nisar O, Pervez H, Mandalia B, Waqas M, Sra HK. Type 3 diabetes mellitus: a link between Alzheimer's disease and type 2 diabetes mellitus. Cureus 2020;12:e11703.
  10. Wood L, Setter SM. Type 3 diabetes: brain diabetes? US Pharm 2010;35:36-41.
  11. Komici K, Femminella GD, Bencivenga L, Rengo G, Pagano G. Diabetes mellitus and Parkinson's disease: a systematic review and meta-analyses. J Parkinsons Dis 2021;11:1585-1596. https://doi.org/10.3233/JPD-212725
  12. Jayaraj RL, Azimullah S, Beiram R. Diabetes as a risk factor for Alzheimer's disease in the Middle East and its shared pathological mediators. Saudi J Biol Sci 2020;27:736-750. https://doi.org/10.1016/j.sjbs.2019.12.028
  13. Kim JH, Kim YT, Lee HJ, Kim HC. The association between cancer and neurodegenerative diseases: a retrospective cohort study using the National Health Insurance Service-National Health Information Database. J Korean Neuropsychiatr Assoc 2021;60:307-319. https://doi.org/10.4306/jknpa.2021.60.4.307
  14. Roffman CE, Buchanan J, Allison GT. Charlson comorbidities index. J Physiother 2016;62:171. https://doi.org/10.1016/j.jphys.2016.05.008
  15. StataCorp. Stata Statistical Software. Release 16. College Station, Texas:StataCorp LLC;2019.
  16. Ott A, Stolk RP, van Harskamp F, Pols HA, Hofman A, Breteler MM. Diabetes mellitus and the risk of dementia: the rotterdam study. Neurology 1999;53:1937-1942. https://doi.org/10.1212/WNL.53.9.1937
  17. Luchsinger J, Reitz C, Honig LS, Tang MX, Shea S, Mayeux R. Aggregation of vascular risk factors and risk of incident Alzheimer disease. Neurology 2005;65:545-551. https://doi.org/10.1212/01.wnl.0000172914.08967.dc
  18. Cheng D, Noble J, Tang MX, Schupf N, Mayeux R, Luchsinger JA. Type 2 diabetes and late-onset Alzheimer's disease. Dement Geriatr Cogn Disord 2011;31:424-430. https://doi.org/10.1159/000324134
  19. Li W, Wang T, Xiao S. Type 2 diabetes mellitus might be a risk factor for mild cognitive impairment progressing to Alzheimer's disease. Neuropsychiatr Dis Treat 2016;12:2489-2495. https://doi.org/10.2147/NDT.S111298
  20. Leibson CL, Rocca WA, Hanson VA, Cha R, Kokmen E, O'Brien PC, Palumbo PJ. The risk of dementia among persons with diabetes mellitus: a population-based cohort study. Ann N Y Acad Sci 1997:826:422-427. https://doi.org/10.1111/j.1749-6632.1997.tb48496.x
  21. Huang CC, Chung CM, Leu HB, Lin LY, Chiu CC, Hsu CY, Chiang CH, Huang PH, Chen TJ, Lin SJ, Chen JW, Chan WL. Diabetes mellitus and the risk of Alzheimer's disease: a nationwide population-based study. PLoS One 2014;9:e87095. https://doi.org/10.1371/journal.pone.0087095
  22. Gudala K, Bansal D, Schifano F, Bhansali A. Diabetes mellitus and risk of dementia: a meta-analysis of prospective observational studies. J Diabetes Investig 2013;4:640-650. https://doi.org/10.1111/jdi.12087
  23. Biessels GJ, Staekenborg S, Brunner E, Brayne C, Scheltens P. Risk of dementia in diabetes mellitus: a systematic review. Lancet Neurol 2006;5:64-74. https://doi.org/10.1016/S1474-4422(05)70284-2
  24. Cereda E, Barichella M, Pedrolli C, Klersy C, Cassani E, Caccialanza R, Pezzoli G. Diabetes and risk of Parkinson's disease: a systematic review and meta-analysis. Diabetes Care 2011;34:2614-2623.
  25. Tysnes OB, Storstein A. Epidemiology of Parkinson's disease. J Neural Transm 2017:124:901-905. https://doi.org/10.1007/s00702-017-1686-y
  26. Cheong JLY, de Pablo-Fernandez E, Foltynie T, Noyce AJ. The association between type 2 diabetes mellitus and Parkinson's disease. J Parkinson's Dis 2020;10:775-789. https://doi.org/10.3233/JPD-191900
  27. Hassan A, Sharma Kandel R, Mishra R, Gautam J, Alaref A, Jahan N. Diabetes mellitus and Parkinson's disease: shared pathophysiological links and possible therapeutic implications. Cureus 2020;12:e9853.
  28. Aviles-Olmos I, Limousin P, Lees A, Foltynie T. Parkinson's disease, insulin resistance and novel agents of neuroprotection. Brain 2012;136:374-384. https://doi.org/10.1093/brain/aws009
  29. Sergi D, Naumovski N, Heilbronn LK, Abeywardena M, O'Callaghan N, Lionetti L, Luscombe-Marsh N. Mitochondrial (dys)function and insulin resistance: from pathophysiological molecular mechanisms to the impact of diet. Front Physiol 2019;10:532.
  30. Chohan H, Senkevich K, Patel RK, Bestwick JP, Jacobs BM, Ciga SB, Gan-Or Z, Noyce AJ. Type 2 diabetes as a determinant of Parkinson's disease risk and progression. Mov Disord 2021;36:1420-1429.
  31. Janson J, Laedtke T, Parisi JE, O'Brien P, Petersen RC, Butler PC. Increased risk of type 2 diabetes in Alzheimer disease. Diabetes 2004;53:474-481. https://doi.org/10.2337/diabetes.53.2.474
  32. Schubert D, Behl C, Lesley R, Brack A, Dargusch R, Sagara Y, Kimura H. Amyloid peptides are toxic via a common oxidative mechanism. Proc Natl Acad Sci U S A 1995;92:1989-1993. https://doi.org/10.1073/pnas.92.6.1989
  33. Janson J, Ashley RH, Harrison D, McIntyre S, Butler PC. The mechanism of islet amyloid polypeptide toxicity is membrane disruption by intermediate-sized toxic amyloid particles. Diabetes 1999;48:491-498. https://doi.org/10.2337/diabetes.48.3.491
  34. Hohn A, Tramutola A, Cascella R. Proteostasis failure in neurodegenerative diseases: focus on oxidative stress. Oxid Med Cell Longev 2020:5497046.
  35. Milardi D, Gazit E, Radford S, Xu Y, Gallardo R, Caflisch A, Westermark GT, Westermark P, La Rosa C, Ramamoorthy A. Proteostasis of islet amyloid polypeptide: a molecular perspective of risk factors and protective strategies for type II diabetes. Chem Rev 2021;121:1845-1893. https://doi.org/10.1021/acs.chemrev.0c00981
  36. Craig EA, Weissman JS, Horwich AL. Heat shock proteins and molecular chaperones: mediators of protein conformation and turnover in the cell. Cell 1994;78:365-372. https://doi.org/10.1016/0092-8674(94)90416-2
  37. Blake MJ, Edelsman R, Feulner GJ, Nortone DD, Holbrook NJ. Stress-induced heat shock protein 70 expression in adrenal cortex: an adrenocorticotropic hormone-sensitive, age-dependent response. Proc Natl Acad Sci USA 1991;88:9873-9877. https://doi.org/10.1073/pnas.88.21.9873
  38. Johnson JA, Bowker SL, Richardson K, Marra CA. Time-varying incidence of cancer after the onset of type 2 diabetes: evidence of potential detection bias. Diabetologia 2011;54:2263-2271. https://doi.org/10.1007/s00125-011-2242-1
  39. Wang M, Hu RY, Wu HB, Pan J, Gong WW, Guo LH, Zhong JM, Fei FR, Yu M. Cancer risk among patients with type 2 diabetes mellitus: a population-based prospective study in China. Sci Rep 2015;5:11503. https://doi.org/10.1038/srep11503
  40. Dankner R, Boffetta P, Balicer RD, Boker LK, Sadeh M, Berlin A, Olmer L, Goldfracht M, Freedman LS. Time-dependent risk of cancer after a diabetes diagnosis in a cohort of 2.3 million adults. Am J Epidemiol 2016;183:1098-1106. https://doi.org/10.1093/aje/kwv290