DOI QR코드

DOI QR Code

ITERATIVE ALGORITHM FOR RANDOM GENERALIZED NONLINEAR MIXED VARIATIONAL INCLUSIONS WITH RANDOM FUZZY MAPPINGS

  • Received : 2022.04.08
  • Accepted : 2022.08.06
  • Published : 2022.12.06

Abstract

In this paper, we consider a class of random generalized nonlinear mixed variational inclusions with random fuzzy mappings and random relaxed cocoercive mappings in real Hilbert spaces. We suggest and analyze an iterative algorithm for finding the approximate solution of this class of inclusions. Further, we discuss the convergence analysis of the iterative algorithm under some appropriate conditions. Our results can be viewed as a refinement and improvement of some known results in the literature.

Keywords

Acknowledgement

The authors would like to thank the anonymous referees for their comments that helped us to improve this paper.

References

  1. R. Ahmad and F.F. Bazan, An iterative algorithm for random generalized nonlinear mixed variational inclusions for random fuzzy mappings, Appl. Math. Comput., 167 (2005), 1400-1411. https://doi.org/10.1016/j.amc.2004.08.025
  2. R. Ahmad and A.P. Farajzadeh, On random variational inclusions with random fuzzy mappings and random relaxed cocoercive mappings, Fuzzy Sets Syst., 160 (2009), 3166-3174. https://doi.org/10.1016/j.fss.2009.01.002
  3. M.G. Alshehri, F.A. Khan and J. Ali, Random generalized nonlinear implicit variational-like inclusion problem involving random fuzzy mappings, J. Math. Anal., 12(2) (2021), 82-94.
  4. S.S. Chang, Fixed Point Theory with Applications, Chongqing Publishing House, Chongqing, China, 1984.
  5. S.S. Chang and Y. Zhu, On variational inequalities for fuzzy mappings, Fuzzy Sets Syst., 32 (1989), 359-367. https://doi.org/10.1016/0165-0114(89)90268-6
  6. Y.J. Cho and H.Y. Lan, Generalized nonlinear random (A, η)-accretive equations with random relaxed cocoercive mappings in Banach spaces, Comput. Math. Appl., 55(9) (2008), 2173-2182. https://doi.org/10.1016/j.camwa.2007.09.002
  7. X.P. Ding, Algorithm of solutions for mixed implicit quasi-variational inequalities with fuzzy mappings, Comput. Math. Appl., 38 (1999), 231-249. https://doi.org/10.1016/S0898-1221(99)00229-1
  8. X.P. Ding and J.Y. Park, A new class of generalized nonlinear quasi-variational inclusions with fuzzy mappings, J. Comput. Appl. Math., 138 (2002), 243-257. https://doi.org/10.1016/S0377-0427(01)00379-X
  9. O. Hans, Random operator equations, Proc. 4th Berkeley Symp. Math. Statist. Probability, Vol. II (1960)-(1961), 185-202.
  10. A. Hassouni and A. Moudafi, A perturbed algorithm for variational inclusions, J. Math. Anal. Appl., 185 (1994), 706-712. https://doi.org/10.1006/jmaa.1994.1277
  11. S. Heilpern, Fuzzy mappings and fixed point theorems, J. Math. Anal. Appl., 83 (1981), 566-569. https://doi.org/10.1016/0022-247x(81)90141-4
  12. C.J. Himmelberg, Measurable relations, Fundamenta Math., 87(1) (1975), 53-72. https://doi.org/10.4064/fm-87-1-53-72
  13. N.J. Huang, A new method for a class of nonlinear variational inequalities with fuzzy mappings, Appl. Math. Lett., 10 (1997), 129-133. https://doi.org/10.1016/S0893-9659(97)00116-X
  14. N.J. Huang, Random generalized nonlinear variational inclusions for random fuzzy mappings, Fuzzy Sets Syst., 105 (1999), 437-444. https://doi.org/10.1016/S0165-0114(97)00222-4
  15. H.Y. Lan, J.H. Kim and Y.J. Cho, On a new system of nonlinear A-monotone multi-valued variational inclusions, J. Math. Anal. Appl., 327 (2007), 481-493. https://doi.org/10.1016/j.jmaa.2005.11.067
  16. S.B. Nadler (Jr.), Multi-valued contractive mappings, Pacific J. Math., 30 (1969), 475-488. https://doi.org/10.2140/pjm.1969.30.475
  17. M.A. Noor, Variational inequalities with fuzzy mappings (I), Fuzzy Sets Syst., 55 (1989), 309-314. https://doi.org/10.1016/0165-0114(93)90257-I
  18. J.Y. Park and J.U. Jeong, Iterative algorithm for finding approximate solutions to completely generalized strongly quasi-variational inequalities for fuzzy mappings, Fuzzy Sets Syst., 115 (2000), 413-418. https://doi.org/10.1016/S0165-0114(98)00339-X
  19. J.Y. Park and J.U. Jeong, A perturbed algorithm of variational inclusions for fuzzy mappings, Fuzzy Sets Syst., 115 (2000), 419-424. https://doi.org/10.1016/S0165-0114(99)00116-5
  20. L.A. Zadeh, Fuzzy sets, Inform. Contr., 8 (1965), 338-353.  https://doi.org/10.1016/S0019-9958(65)90241-X