DOI QR코드

DOI QR Code

ERGODIC SHADOWING, $\underline{d}$-SHADOWING AND EVENTUAL SHADOWING IN TOPOLOGICAL SPACES

  • Received : 2022.03.07
  • Accepted : 2022.04.07
  • Published : 2022.12.06

Abstract

We define the notions of ergodic shadowing property, $\underline{d}$-shadowing property and eventual shadowing property in terms of the topology of the phase space. Secondly we define these notions in terms of the compatible uniformity of the phase space. When the phase space is a compact Hausdorff space, we establish the equivalence of the corresponding definitions of the topological approach and the uniformity approach. In case the phase space is a compact metric space, the notions of ergodic shadowing property, $\underline{d}$-shadowing property and eventual shadowing property defined in terms of topology and uniformity are equivalent to their respective standard definitions.

Keywords

Acknowledgement

We are thankful to the anonymous referees for their valuable comments and suggestions towards the improvement of the paper.

References

  1. E. Akin, J. Auslander and K. Berg, When is a transitive map chaotic?; in conference in Ergodic Theory and Probability, de Gruyter, (1996), 25-40.
  2. S. Akoijam and K.B. Mangang, On periodic shadowing, transitivity, chain mixing and expansivity in Uniform Dynamical Systems, Gulf J. Math., 9(2) (2020), 31-39. https://doi.org/10.56947/gjom.v9i2.406
  3. D. Alcaraz and M. Sanchis, A note on extensions of dynamical systems from Uniform spaces, Topology Appl., 137(1) (2004), 3-12. https://doi.org/10.1016/S0166-8641(03)00194-9
  4. D.V. Anosov, Geodesic flow on a closed Riemannian manifolds of negative curvature, Trudy Mat. Inst. V. A. Steklova, 90 (1967), 3-210.
  5. I.K. Argyros and S. George, Expanding the applicability of the shadowing lemma for operators with chaotic behavior using restricted convergence domains, Nonlinear Funct. Anal. Appl., 21(4) (2016), 591-596.
  6. J. Banks, J. Brooks, G. Cairns, G. Davis and P. Stace, On Devaney's definition of chaos, Am. Math. Mon., 99(4) (1992), 332-334. https://doi.org/10.2307/2324899
  7. R. Bowen, ω-limit sets for axiom a diffeomorphism, J. Diff. Equ., 18(2) (1975), 333-339. https://doi.org/10.1016/0022-0396(75)90065-0
  8. W. Brian, Abstract ω-limit sets, J. Symb. Log., 83(2) (2018), 477-495. https://doi.org/10.1017/jsl.2018.11
  9. T. Ceccherini-Silberstein and M Coornaert, Sensitivity and Devaney's Chaos in Uniform spaces, J. Dyn.Control Syst., 19(3) (2013), 349-357. https://doi.org/10.1007/s10883-013-9182-7
  10. P. Das and T. Das, Various types of shadowing and specification on Uniform spaces, J. Dyn. Control Syst., 24(2) (2018), 253-267. https://doi.org/10.1007/s10883-017-9388-1
  11. T.TH. Devi and K.B. Mangang, Positive Expansivity, Chain Transitivity, Rigidity, and Specification on General Topological Spaces, Bull. Kor. Math. Soc. 59(2) (2022), 319343.
  12. A. Fakhari and H. Ghane, On Shadowing: Ordinary and Ergodic, J. Math. Anal. Appl., 365(1) (2010), 151-155. https://doi.org/10.1016/j.jmaa.2009.11.004
  13. E. Glasner and B. Weiss, Sensitive dependence on initial conditions, Nonlinearity, 6 (1993), 1067-1075. https://doi.org/10.1088/0951-7715/6/6/014
  14. C. Good and S. Macias, What is topological about topological dynamics?, Discrete Cont. Dyn. Syst., 38(3) (2018), 1007-1031. https://doi.org/10.3934/dcds.2018043
  15. B.M. Hood, Topological entropy and Uniform spaces, J. Lord. Math. Soc.,11. Ser., s2-8(4) (1974), 633-641.
  16. I.M. James, Topologies and Uniformities. Springer, 1999.
  17. P. Kurka, Topological and symbolic dynamics. Societe Mathematique de France, 2003.
  18. M. Lee, Notes on the eventual shadowing property of a continuous map, J Chungcheong Math Soc., 30(4) (2017), 381-385.
  19. S. Silverman, On maps with dense orbits and the definition of chaos, Rocky Mt. J. Math., 22(1) (1992), 353-375. https://doi.org/10.1216/rmjm/1181072815
  20. H. Wang, Equicontinuity, shadowing and distality in General topological spaces, Czechoslovak Math. J., 70 (2020), 711-726. https://doi.org/10.21136/cmj.2020.0488-18
  21. A. Weil, Sur Les Espaces a structure Uniforme et Sur La Topologie Generale, Hermann and Cie, Editeurs, 1938.