Acknowledgement
We are thankful to the anonymous referees for their valuable comments and suggestions towards the improvement of the paper.
References
- E. Akin, J. Auslander and K. Berg, When is a transitive map chaotic?; in conference in Ergodic Theory and Probability, de Gruyter, (1996), 25-40.
- S. Akoijam and K.B. Mangang, On periodic shadowing, transitivity, chain mixing and expansivity in Uniform Dynamical Systems, Gulf J. Math., 9(2) (2020), 31-39. https://doi.org/10.56947/gjom.v9i2.406
- D. Alcaraz and M. Sanchis, A note on extensions of dynamical systems from Uniform spaces, Topology Appl., 137(1) (2004), 3-12. https://doi.org/10.1016/S0166-8641(03)00194-9
- D.V. Anosov, Geodesic flow on a closed Riemannian manifolds of negative curvature, Trudy Mat. Inst. V. A. Steklova, 90 (1967), 3-210.
- I.K. Argyros and S. George, Expanding the applicability of the shadowing lemma for operators with chaotic behavior using restricted convergence domains, Nonlinear Funct. Anal. Appl., 21(4) (2016), 591-596.
- J. Banks, J. Brooks, G. Cairns, G. Davis and P. Stace, On Devaney's definition of chaos, Am. Math. Mon., 99(4) (1992), 332-334. https://doi.org/10.2307/2324899
- R. Bowen, ω-limit sets for axiom a diffeomorphism, J. Diff. Equ., 18(2) (1975), 333-339. https://doi.org/10.1016/0022-0396(75)90065-0
- W. Brian, Abstract ω-limit sets, J. Symb. Log., 83(2) (2018), 477-495. https://doi.org/10.1017/jsl.2018.11
- T. Ceccherini-Silberstein and M Coornaert, Sensitivity and Devaney's Chaos in Uniform spaces, J. Dyn.Control Syst., 19(3) (2013), 349-357. https://doi.org/10.1007/s10883-013-9182-7
- P. Das and T. Das, Various types of shadowing and specification on Uniform spaces, J. Dyn. Control Syst., 24(2) (2018), 253-267. https://doi.org/10.1007/s10883-017-9388-1
- T.TH. Devi and K.B. Mangang, Positive Expansivity, Chain Transitivity, Rigidity, and Specification on General Topological Spaces, Bull. Kor. Math. Soc. 59(2) (2022), 319343.
- A. Fakhari and H. Ghane, On Shadowing: Ordinary and Ergodic, J. Math. Anal. Appl., 365(1) (2010), 151-155. https://doi.org/10.1016/j.jmaa.2009.11.004
- E. Glasner and B. Weiss, Sensitive dependence on initial conditions, Nonlinearity, 6 (1993), 1067-1075. https://doi.org/10.1088/0951-7715/6/6/014
- C. Good and S. Macias, What is topological about topological dynamics?, Discrete Cont. Dyn. Syst., 38(3) (2018), 1007-1031. https://doi.org/10.3934/dcds.2018043
- B.M. Hood, Topological entropy and Uniform spaces, J. Lord. Math. Soc.,11. Ser., s2-8(4) (1974), 633-641.
- I.M. James, Topologies and Uniformities. Springer, 1999.
- P. Kurka, Topological and symbolic dynamics. Societe Mathematique de France, 2003.
- M. Lee, Notes on the eventual shadowing property of a continuous map, J Chungcheong Math Soc., 30(4) (2017), 381-385.
- S. Silverman, On maps with dense orbits and the definition of chaos, Rocky Mt. J. Math., 22(1) (1992), 353-375. https://doi.org/10.1216/rmjm/1181072815
- H. Wang, Equicontinuity, shadowing and distality in General topological spaces, Czechoslovak Math. J., 70 (2020), 711-726. https://doi.org/10.21136/cmj.2020.0488-18
- A. Weil, Sur Les Espaces a structure Uniforme et Sur La Topologie Generale, Hermann and Cie, Editeurs, 1938.