Acknowledgement
The second author is thankful to SERB, INDIA for providing fund under the project-CRG/2018/000615, and the third author was supported by the Basic Science Research Program through the National Research Foundation(NRF) Grant funded by Ministry of Education of the republic of Korea (2018R1D1A1B07045427).
References
- T. Abdeljawad, E. Karapinar, S.K. Panda and N. Mlaiki, Solutions of boundary value problems on extended-Branciari b-distance, J. Ineq. Appl., 2020 (2020), Art. Number 103, 1-16. https://doi.org/10.1186/s13660-019-2265-6
- I.A. Bakhtin, The contraction mapping principle in quasi metric spaces, Funkc. Anal. Ulianowsk Gos. Ped. Inst., 30 (1999), 243-253.
- S. Bose, Sk.M. Hossein and K. Paul, Solution of a class of nonlinear matrix equations, Linear Algebra Appl., 530 (2017), 109-126. https://doi.org/10.1016/j.laa.2017.05.006
- R. Bouhafs, A. Tallafha and W. Shatanawi, Fixed point theorems in ordered b-metric spaces with alternating distance functions, Nonlinear Funct. Anal. Appl., 26(3) (2021), 581-600. https://doi.org/10.22771/NFAA.2021.26.03.09
- A. Branciari, A fixed point theorem for mappings satisfying a general contractive condition of integral type, Int. J. Math. Math. Sci., 29(9) (2002), 531-536. https://doi.org/10.1155/S0161171202007524
- L. Chen, S. Huang, C. Li and Y. Zhao, Several fixed-point theorems for F-contractions in complete Branciari b-metrics, and applications, J. Funct. Spaces, 2020 (2020), Art. Number 7963242, 1-10. https://doi.org/10.1155/2020/7061549
- S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostraviensis, 5 (1993), 5-11.
- S. Czerwik, Nonlinear set-valued contraction mappings in b-metric spaces, Atti Sem. Mat. Fis. Univ. Modena, 46 (1998), 263-276.
- S. Ding, M. Imdad, S. Radenovi'c and J. Vujakovic, On some fixed point results in bmetric, rectangular and b-rectangular metric spaces, Arab J. Math. Sci., 22(2) (2016), 151-164. https://doi.org/10.1016/j.ajmsc.2015.05.003
- D. Dukic, Z. Kadelburg and S. Radenovic, Fixed points of Geraghty-type mappings in various generalized metric spaces, Abstract Appl. Anal., 2011, Art. Number 561245, 1-13.
- A. Felhi, S. Sahmim and H. Aydi, Ulam-Hyers stability and well-posedness of fixed point problems for α-λ-contractions on quasi b-metric spaces, Fixed Point Theory Appl., 2016 (2016), Art. Numner 1, 1-20.
- H. Garai and L.K. Dey, Common solution to a pair of nonlinear matrix equations via fixed point results, J. Fixed Point Theory Appl., 21(61) (2019), https://doi.org/10.1007/s11784-019-0698-7.
- M. Geraghty, On contractive mappings, Proc. Amer. Math. Soc., 40 (1973), 604-608. https://doi.org/10.1090/S0002-9939-1973-0334176-5
- Sk.M. Hossein, S. Bose and K. Paul, On positive definite solution of a nonlinear matrix equations, Linear Mult. Alg., 66(5) (2018), 881-893. https://doi.org/10.1080/03081087.2017.1330866
- Sk.M. Hossein, S. Bose and K. Paul, Solution of a pair of nonlinear matrix equations, Fixed Point Theory, 19(1) (2018), 265-274. https://doi.org/10.24193/fpt-ro.2018.1.21
- M. Jleli and B. Samet, A new generalization of the Banach contraction principle, J. Ineq. Appl., 2014(2014), Art. Number ID 38, 1-8.
- T. Kamran, M. Samreen and O.U. Ain, A generalization of b-metric space and some fixed point theorems, Mathematics, 5(2) (2017), Art. Number 19. https://doi.org/10.3390/math5020019
- C. Kausika, K. Balachandran, N. Annapoorani and J.K. Kim, Existence and stability results of generalized fractional integrodifferential equations, Nonlinear Funct. Anal. Appl., 26(4) (2021), 793-809. https://doi.org/10.22771/NFAA.2021.26.04.09
- F. Khojasteh, A new approach to the study of fixed point theorems via simulation functions, Filomat, 96 (2015), 1189-1194. https://doi.org/10.2298/FIL1506189K
- N. Limpanukorn, P. Sa Ngiamsunthorn, D. Songsanga and A. Suechoei, On the stability of differential systems involving ψ-Hilfer fractional derivative, Nonlinear Funct. Anal. Appl., 27(3) (2022), 513-532.
- Z.D. Mitrovi,, H. Isk and S. Radenovic, The new results in extended b-metric spaces and applications, Int. J. Nonlinear Anal. Appl., 11(1) (2020), 473-482.
- Z. Mustafa, V. Parvaneh, J.R. Roshan and Z. Kadelburg, b2-Metric spaces and some fixed point theorems, Fixed Point Theory Appl., 2014 (2014), Art. Number 144, 1-23.
- H.K. Nashine and Z. Kadelburg, Existence of solutions of cantilever beam problem via α - β - FG-contractions in b-metric-like spaces, Filomat, 31(11) (2017), 3057-3074. https://doi.org/10.2298/FIL1711057N
- M. Pacurar and I.A. Rus, Fixed point theory for cyclic φ-contractions, Nonlinear Anal., 72 (2010), 1181-1187. https://doi.org/10.1016/j.na.2009.08.002
- V. Parvaneh, N. Hussain and Z. Kadelburg, Generalized Wardowski type fixed point theorems via α-admissible F G-contractions in b-metric spaces, Acta Math. Scientia, 36(5) (2016), 1445-1456. https://doi.org/10.1016/S0252-9602(16)30080-7
- S. Phiangsungnoen, W. Sintunavarat and P. Kumam, Fixed point results, generalized Ulam-Hyers stability and well-posedness via α-admissible mappings in b-metric spaces, Fixed Point Theory Appl., 2014 (2012), Art. Number 188, 1-17.
- V. Popa, Well-posedness of fixed point problems in orbitally complete metric spaces, Stud. Cerc. St. Ser. Mat. Univ., 16 (2006), Supplement. Proc. ICMI 45, Bacau, Sept. 18-20 (2006), 209-214.
- V. Popa, Well-posedness of fixed point problems in compact metric spaces, Bul. Univ. Petrol-Gaze, Ploiesti, Sec. Mat. Inform. Fiz., 60(1) (2008), 1-4.
- D. Rakic, A. Mukheimer, T. Doenovic and Z.D. Mitrovic, and S. Radenovic, On some new fixed point results in fuzzy b-metric spaces, J. Ineq. Appl., 2020 (2020), Art. Number 99, 1-14. https://doi.org/10.1186/s13660-019-2265-6
- T. Ram, J.K. Kim and R. Kour, On optimal solutions of well-posed problems and variational inequalities, Nonlinear Funct. Anal. Appl., 26(4) (2021), 781-792. https://doi.org/10.22771/NFAA.2021.26.04.08
- A.C.M. Ran and M.C.B. Reurings, On the matrix equation X + A*F(X)A = Q: solutions and perturbation theory, Linear Alg. Appl., 346 (2002), 15-26. https://doi.org/10.1016/S0024-3795(01)00508-0
- A.C.M. Ran and M.C.B. Reurings, A fixed point theorem in partially ordered sets and some applications to matrix equations, Proc. Amer. Math. Soc., 132 (2004), 1435-1443. https://doi.org/10.1090/S0002-9939-03-07220-4
- I.A. Rus, The theory of a metrical fixed point theorem: Theoretical and applicative relevances, Fixed Point Theory, 9 (2008), 541-559.
- K. Sawangsup and W. Sintunavarat, Fixed point and multidimensional fixed point theorems with applications to nonlinear matrix equations in terms of weak altering distance functions, Open Math., 15 (2017), 111-125. https://doi.org/10.1515/math-2017-0012
- S.M. Ulam, Problems in Modern Mathematics, John Wiley & Sons, New York, NY, USA, 1964.