DOI QR코드

DOI QR Code

POSITIVE SOLUTIONS FOR A NONLINEAR MATRIX EQUATION USING FIXED POINT RESULTS IN EXTENDED BRANCIARI b-DISTANCE SPACES

  • Reena, Jain (Mathematics Division, SASL, VIT Bhopal University) ;
  • Hemant Kumar, Nashine (Mathematics Division, SASL, VIT Bhopal University, Department of Mathematics and Applied Mathematics, University of Johannesburg, Kingsway Campus) ;
  • J.K., Kim (Department of Mathematics Education, Kyungnam University)
  • Received : 2021.03.17
  • Accepted : 2022.03.19
  • Published : 2022.12.06

Abstract

We consider the nonlinear matrix equation (NMEs) of the form 𝓤 = 𝓠 + Σki=1 𝓐*iℏ(𝓤)𝓐i, where 𝓠 is n × n Hermitian positive definite matrices (HPDS), 𝓐1, 𝓐2, . . . , 𝓐m are n × n matrices, and ~ is a nonlinear self-mappings of the set of all Hermitian matrices which are continuous in the trace norm. We discuss a sufficient condition ensuring the existence of a unique positive definite solution of a given NME and demonstrate this sufficient condition for a NME 𝓤 = 𝓠 + 𝓐*1(𝓤2/900)𝓐1 + 𝓐*2(𝓤2/900)𝓐2 + 𝓐*3(𝓤2/900)𝓐3. In order to do this, we define 𝓕𝓖w-contractive conditions and derive fixed points results based on aforesaid contractive condition for a mapping in extended Branciari b-metric distance followed by two suitable examples. In addition, we introduce weak well-posed property, weak limit shadowing property and generalized Ulam-Hyers stability in the underlying space and related results.

Keywords

Acknowledgement

The second author is thankful to SERB, INDIA for providing fund under the project-CRG/2018/000615, and the third author was supported by the Basic Science Research Program through the National Research Foundation(NRF) Grant funded by Ministry of Education of the republic of Korea (2018R1D1A1B07045427).

References

  1. T. Abdeljawad, E. Karapinar, S.K. Panda and N. Mlaiki, Solutions of boundary value problems on extended-Branciari b-distance, J. Ineq. Appl., 2020 (2020), Art. Number 103, 1-16. https://doi.org/10.1186/s13660-019-2265-6
  2. I.A. Bakhtin, The contraction mapping principle in quasi metric spaces, Funkc. Anal. Ulianowsk Gos. Ped. Inst., 30 (1999), 243-253.
  3. S. Bose, Sk.M. Hossein and K. Paul, Solution of a class of nonlinear matrix equations, Linear Algebra Appl., 530 (2017), 109-126. https://doi.org/10.1016/j.laa.2017.05.006
  4. R. Bouhafs, A. Tallafha and W. Shatanawi, Fixed point theorems in ordered b-metric spaces with alternating distance functions, Nonlinear Funct. Anal. Appl., 26(3) (2021), 581-600. https://doi.org/10.22771/NFAA.2021.26.03.09
  5. A. Branciari, A fixed point theorem for mappings satisfying a general contractive condition of integral type, Int. J. Math. Math. Sci., 29(9) (2002), 531-536. https://doi.org/10.1155/S0161171202007524
  6. L. Chen, S. Huang, C. Li and Y. Zhao, Several fixed-point theorems for F-contractions in complete Branciari b-metrics, and applications, J. Funct. Spaces, 2020 (2020), Art. Number 7963242, 1-10. https://doi.org/10.1155/2020/7061549
  7. S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostraviensis, 5 (1993), 5-11.
  8. S. Czerwik, Nonlinear set-valued contraction mappings in b-metric spaces, Atti Sem. Mat. Fis. Univ. Modena, 46 (1998), 263-276.
  9. S. Ding, M. Imdad, S. Radenovi'c and J. Vujakovic, On some fixed point results in bmetric, rectangular and b-rectangular metric spaces, Arab J. Math. Sci., 22(2) (2016), 151-164. https://doi.org/10.1016/j.ajmsc.2015.05.003
  10. D. Dukic, Z. Kadelburg and S. Radenovic, Fixed points of Geraghty-type mappings in various generalized metric spaces, Abstract Appl. Anal., 2011, Art. Number 561245, 1-13.
  11. A. Felhi, S. Sahmim and H. Aydi, Ulam-Hyers stability and well-posedness of fixed point problems for α-λ-contractions on quasi b-metric spaces, Fixed Point Theory Appl., 2016 (2016), Art. Numner 1, 1-20.
  12. H. Garai and L.K. Dey, Common solution to a pair of nonlinear matrix equations via fixed point results, J. Fixed Point Theory Appl., 21(61) (2019), https://doi.org/10.1007/s11784-019-0698-7.
  13. M. Geraghty, On contractive mappings, Proc. Amer. Math. Soc., 40 (1973), 604-608. https://doi.org/10.1090/S0002-9939-1973-0334176-5
  14. Sk.M. Hossein, S. Bose and K. Paul, On positive definite solution of a nonlinear matrix equations, Linear Mult. Alg., 66(5) (2018), 881-893. https://doi.org/10.1080/03081087.2017.1330866
  15. Sk.M. Hossein, S. Bose and K. Paul, Solution of a pair of nonlinear matrix equations, Fixed Point Theory, 19(1) (2018), 265-274. https://doi.org/10.24193/fpt-ro.2018.1.21
  16. M. Jleli and B. Samet, A new generalization of the Banach contraction principle, J. Ineq. Appl., 2014(2014), Art. Number ID 38, 1-8.
  17. T. Kamran, M. Samreen and O.U. Ain, A generalization of b-metric space and some fixed point theorems, Mathematics, 5(2) (2017), Art. Number 19. https://doi.org/10.3390/math5020019
  18. C. Kausika, K. Balachandran, N. Annapoorani and J.K. Kim, Existence and stability results of generalized fractional integrodifferential equations, Nonlinear Funct. Anal. Appl., 26(4) (2021), 793-809. https://doi.org/10.22771/NFAA.2021.26.04.09
  19. F. Khojasteh, A new approach to the study of fixed point theorems via simulation functions, Filomat, 96 (2015), 1189-1194. https://doi.org/10.2298/FIL1506189K
  20. N. Limpanukorn, P. Sa Ngiamsunthorn, D. Songsanga and A. Suechoei, On the stability of differential systems involving ψ-Hilfer fractional derivative, Nonlinear Funct. Anal. Appl., 27(3) (2022), 513-532.
  21. Z.D. Mitrovi,, H. Isk and S. Radenovic, The new results in extended b-metric spaces and applications, Int. J. Nonlinear Anal. Appl., 11(1) (2020), 473-482.
  22. Z. Mustafa, V. Parvaneh, J.R. Roshan and Z. Kadelburg, b2-Metric spaces and some fixed point theorems, Fixed Point Theory Appl., 2014 (2014), Art. Number 144, 1-23.
  23. H.K. Nashine and Z. Kadelburg, Existence of solutions of cantilever beam problem via α - β - FG-contractions in b-metric-like spaces, Filomat, 31(11) (2017), 3057-3074. https://doi.org/10.2298/FIL1711057N
  24. M. Pacurar and I.A. Rus, Fixed point theory for cyclic φ-contractions, Nonlinear Anal., 72 (2010), 1181-1187. https://doi.org/10.1016/j.na.2009.08.002
  25. V. Parvaneh, N. Hussain and Z. Kadelburg, Generalized Wardowski type fixed point theorems via α-admissible F G-contractions in b-metric spaces, Acta Math. Scientia, 36(5) (2016), 1445-1456. https://doi.org/10.1016/S0252-9602(16)30080-7
  26. S. Phiangsungnoen, W. Sintunavarat and P. Kumam, Fixed point results, generalized Ulam-Hyers stability and well-posedness via α-admissible mappings in b-metric spaces, Fixed Point Theory Appl., 2014 (2012), Art. Number 188, 1-17.
  27. V. Popa, Well-posedness of fixed point problems in orbitally complete metric spaces, Stud. Cerc. St. Ser. Mat. Univ., 16 (2006), Supplement. Proc. ICMI 45, Bacau, Sept. 18-20 (2006), 209-214.
  28. V. Popa, Well-posedness of fixed point problems in compact metric spaces, Bul. Univ. Petrol-Gaze, Ploiesti, Sec. Mat. Inform. Fiz., 60(1) (2008), 1-4.
  29. D. Rakic, A. Mukheimer, T. Doenovic and Z.D. Mitrovic, and S. Radenovic, On some new fixed point results in fuzzy b-metric spaces, J. Ineq. Appl., 2020 (2020), Art. Number 99, 1-14. https://doi.org/10.1186/s13660-019-2265-6
  30. T. Ram, J.K. Kim and R. Kour, On optimal solutions of well-posed problems and variational inequalities, Nonlinear Funct. Anal. Appl., 26(4) (2021), 781-792. https://doi.org/10.22771/NFAA.2021.26.04.08
  31. A.C.M. Ran and M.C.B. Reurings, On the matrix equation X + A*F(X)A = Q: solutions and perturbation theory, Linear Alg. Appl., 346 (2002), 15-26. https://doi.org/10.1016/S0024-3795(01)00508-0
  32. A.C.M. Ran and M.C.B. Reurings, A fixed point theorem in partially ordered sets and some applications to matrix equations, Proc. Amer. Math. Soc., 132 (2004), 1435-1443. https://doi.org/10.1090/S0002-9939-03-07220-4
  33. I.A. Rus, The theory of a metrical fixed point theorem: Theoretical and applicative relevances, Fixed Point Theory, 9 (2008), 541-559.
  34. K. Sawangsup and W. Sintunavarat, Fixed point and multidimensional fixed point theorems with applications to nonlinear matrix equations in terms of weak altering distance functions, Open Math., 15 (2017), 111-125. https://doi.org/10.1515/math-2017-0012
  35. S.M. Ulam, Problems in Modern Mathematics, John Wiley & Sons, New York, NY, USA, 1964.