DOI QR코드

DOI QR Code

바나듐함유 티탄철석 정광으로부터 황산 침출법에 의한 바나듐의 침출거동 및 유가금속의 회수가능성

Leaching Behavior of Vanadium and Possibility of Recovery of Valuable Metals from VTM Concentrate by Sulfuric Acid Leaching

  • 주성호 (한국지질자원연구원 자원활용연구본부) ;
  • 신동주 (한국지질자원연구원 자원활용연구본부) ;
  • 이동석 (한국지질자원연구원 자원활용연구본부) ;
  • 박진태 (한국지질자원연구원 자원활용연구본부) ;
  • 전호석 (한국지질자원연구원 자원활용연구본부) ;
  • 신선명 (한국지질자원연구원 자원활용연구본부)
  • Joo, Sung-Ho (Resources Recycling Research Center, Resources Utilization Division, Korea Institute of Geoscience and Mineral Resources (KIGAM)) ;
  • Shin, Dong Ju (Resources Recycling Research Center, Resources Utilization Division, Korea Institute of Geoscience and Mineral Resources (KIGAM)) ;
  • Lee, Dongseok (Resources Recycling Research Center, Resources Utilization Division, Korea Institute of Geoscience and Mineral Resources (KIGAM)) ;
  • Park, Jin-Tae (Resources Recycling Research Center, Resources Utilization Division, Korea Institute of Geoscience and Mineral Resources (KIGAM)) ;
  • Jeon, Hoseok (Resources Recycling Research Center, Resources Utilization Division, Korea Institute of Geoscience and Mineral Resources (KIGAM)) ;
  • Shin, Shun Myung (Resources Recycling Research Center, Resources Utilization Division, Korea Institute of Geoscience and Mineral Resources (KIGAM))
  • 투고 : 2022.01.24
  • 심사 : 2022.02.07
  • 발행 : 2022.02.28

초록

국내 바나듐 함유 티탄철석으로부터 직접 산 침출법에 의한 바나듐 및 유가금속의 침출거동과 회수가능성에 대한 연구를 수행하였다. 본 연구에 사용된 국내 연천산 티탄철석 정광은 0.8% V2O5를 함유하고 있었으며 HSC 프로그램을 통해 magnetite와 ilmenite의 비율이 1.9:1로 계산되었다. 바나듐 함유 정광으로부터 황산농도 및 온도별 침출실험을 통해 바나듐의 침출율은 Fe의 침출거동과 매우 유사하였으며 ilmenite 내 Ti의 침출은 75℃ 이상에서 TiOSO4의 형태로 침출 될 수 있음을 알 수 있었다. VTM 정광 내 V, Fe, Ti의 침출율을 향상시키기 위해 황산산화 및 황산환원침출을 수행하였고 환원제로 Na2SO3를 사용할 시 바나듐의 침출율은 80% 였으나 Ti의 침출율은 황산침출과 비교하여 20% 상승한 55%까지 침출되었다. 반면 산화제로 Na2S2O8을 첨가할 시, 바나듐은 거의 전량 침출되었으며 XRD 기기분석을 통해 잔사 내 주성분이 ilmenite임을 알 수 있었다. 산화 및 환원 침출용액으로부터 유가금속의 회수가능성에 대한 용매추출 연구를 통해 산화 침출용액에서는 그 어떤 금속도 선택성이 없었던 반면 환원침출용액에서는 Cyanex 923 용매화 추출제에 의해 Ti이 Fe와 V으로부터 선택적으로 추출될 수 있는 가능성을 보였다.

A study was conducted in Korea on the leaching behavior and possibility of recovery of vanadium and other valuable metals from domestic vanadium titanomagnetite (VTM) by direct acid leaching. In this study, a VTM concentrate containing 0.8% V2O5 was used, and the ratio of magnetite to ilmenite was calculated as 1.9:1 by using the HSC program. The leaching behavior of vanadium from the VTM was similar to that of iron, and it was affected by the concentration of sulfuric acid and temperature. Further, titanium could be leached in the form of TiOSO4 at a temperature higher than 75℃. To improve the leaching efficiency of V, Fe, and Ti in VTM, reductive sulfuric acid and oxidative sulfuric acid leaching were performed. When Na2SO3 was used as a reducing agent, the leaching rate of vanadium was 80% of that in that case of leaching by sulfuric acid. Similarly, the leaching rate of titanium increased from 20% to 50%. When Na2S2O8 was used as an oxidation agent, most of the vanadium was leached, and the main residue found by XRD analysis was ilmenite. In studies on the possibility of recovering valuable metals, the selective extraction of metals is hardly achieved by solvent extraction from oxidation leaching solutions; however, in this study, Cyanex 923, a solvation extractant from reductive leaching solutions, could selectively extract Ti.

키워드

과제정보

본 연구는 한국지질자원연구원 주요사업인 '국내 부존바나듐(V) 광물자원 선광/제련/활용기술 개발(GP2020-013, 22-3212-1)' 과제의 일환으로 수행되었습니다.

참고문헌

  1. Lee, S., 2020 : A Review on Types of Vanadium Deposits and Process Mineralogical Characteristics, Journal of The Korean Society of Mineral and Energy Resources Engineers, 57(6), pp.640-651. https://doi.org/10.32390/ksmer.2020.57.6.640
  2. Lmtiaz, M., Rizwan, M.S., Xiong, S., et al., 2015 : Vanadium, recent advancements and research prospects: A review, Environment International, 80, pp.79-88. https://doi.org/10.1016/j.envint.2015.03.018
  3. Wang, M., Huang, S., Chen, B., et al., 2020 : A review of processing technologies for vanadium extraction from stone coal, Mineral Processing and Extractive Metallurgy, 129(3-4), pp.290-298. https://doi.org/10.1080/25726641.2018.1505207
  4. Moskalyk, R.R., Alfantazi, A.M., 2003 : Processing of vanadium: a review, Minerals Engineering, 16(9), pp.793-805. https://doi.org/10.1016/S0892-6875(03)00213-9
  5. USGS(U.S. Geological Survey), 2019 : Mineral Commodity Summaries 2019, Reston, Virginia, USA
  6. Gilligan, R., Nikoloski, A.N., 2020 : The extraction of vanadium from titanomagnetites and other sources, Minerals Engineering, 146, pp.106106. https://doi.org/10.1016/j.mineng.2019.106106
  7. Hukkanen, E., Walden, H., 1985 : The production of vanadium and steel from titanomagnetites, International Journal of Mineral Processing, 15, pp.89-102 https://doi.org/10.1016/0301-7516(85)90026-2
  8. Jena, B.C., Dresler, W.., Reilly, I.G., 1995 : Extraction of titanium, vanadium, and iron from titanomagnetite deposits at Pipestone lake, Manitoba, Canada, Minerals Engineering, 8(1/2), pp.159-168. https://doi.org/10.1016/0892-6875(94)00110-X
  9. Chen, D., Zhao, L., Liu, Y., et al., 2013 : A novel process for recovery of iron, titanium, and vanadium from titanomagnetite concentrates: NaOH molten salt roasting and water leaching processes, Journal of Hazardous Materials, 244-245, pp.588-595. https://doi.org/10.1016/j.jhazmat.2012.10.052
  10. Zhao, L., Wang, L., Qi, T., et al., 2014 : A novel method to extract iron, titanium, vanadium, and chromium from high-chromium vanadium-bearing titanomagnetite concentrates, Hydrometallurgy, 149, pp.106-109. https://doi.org/10.1016/j.hydromet.2014.07.014
  11. Parirenyatwa, S., Escudero-Castejon, L., Sanchez-Segado, S., et al., 2016 : Comparative study of alkali roasting and leaching of chromite ores and titaniferous minerals, Hydrometallurgy, 165, pp.213-226. https://doi.org/10.1016/j.hydromet.2015.08.002
  12. Zhang, Y., Yi, L., Wang, L., et al., 2017 : A novel process for the recovery of iron, titanium, and vanadium from vanadium-bearing titanomagnetite: sodium modification-direct reduction coupled process, International Journal of Minerals, Metallurgy and Materials, 24(5), pp.504-511. https://doi.org/10.1007/s12613-017-1431-4
  13. Li, R., Liu, T., Zhang, Y., et al., 2018 : Efficient extraction of vanadium from vanadium-titanium magnetite concentrate by potassium salt roasting additives, Minerals, 8(1), pp.25. https://doi.org/10.3390/min8010025
  14. Peter H. K., 1985 : Vanadium, Mineral Facts and Problems, pp.897, 1985 Edition, Horton C. R., U.S. Bureau of Mines, Washington. DC
  15. Kim, J., 2013 : Research and development for the recovery of uranium and vanadium from Korean black shale ore, J. of Korean Inst. of Resources Recycling, 22(1), pp.3-10. https://doi.org/10.7844/kirr.2013.22.1.3
  16. Lee, C., Lee, H., Shin, M., 1997 : Barium-Vanadium muscovite of coaly metapelite in the Hoenam area of the Ogcheon Supergroup, Korea. J. the Geological Society of Korea, 33(2), pp.55-64.
  17. Go, B., Han, Y., Kim, S., et al., 2020 : Development of combination separation process for recovery of high-grade concentrate from Gwan-in Mine ilmenite, J. Korean Soc. Miner. Energy Resour. Eng., 57(5), pp.413-420. https://doi.org/10.32390/ksmer.2020.57.5.413
  18. Han, Y., Go, B., Kim, S., et al., 2021 : Magnetic Separation Behavior of V, Ti, and Fe of Fractured Products from Domestic Vanadium Titanium-Magnetite (VTM) Ore, J. Korean Soc. Miner. Energy Resour. Eng., 58(1), pp.10-16. https://doi.org/10.32390/ksmer.2021.58.1.010
  19. Kim, R., Kim, M.-S., Lee, J.-C., Lee, et al., 2021 : Optimization of Soda ash Roasting-water Leaching Conditions for Vanadium Recovery from a Vanadium-bearing Titaniferous Magnetite Ore, J. Korean Soc. Miner. Energy Resour. Eng., 58(1), pp.17-24. https://doi.org/10.32390/ksmer.2021.58.1.017
  20. Yoon, H.-S., Chae, S., Kim, C.-J., et al., 2019 : Precipitation Behavior of Ammonium Vanadate from Solution Containing Vanadium, J. of Korean Inst. of Resources Recycling, 28(5), pp.42-50.
  21. Shin, D.J., Joo, S.-H., Lee, D., et al., 2021 : Vanadium Leaching Behavior from Domestic Vanadium Bearing Titanomagnetite Ore through CaO Roasting, J. of Korean Inst. of Resources Recycling, 30(4), pp.27-34. https://doi.org/10.7844/kirr.2021.30.4.27
  22. Ishikawa, K., 2010 : Bone Substitute Fabrication Based on Dissolution-Precipitation Reactions, Materials, 3(2), pp.1138-1155. https://doi.org/10.3390/ma3021138
  23. Jiang, T., Dong, H. G., Guo, Y. F., et al., 2010 : Study on leaching Ti from Ti bearing blast furnace slag by sulphuric acid, Mineral Processing and Extractive Metallurgy, 119(1), pp.33-38. https://doi.org/10.1179/037195509X12585446038807
  24. Nie, W., Wne, S., Feng, Q., et al., 2020 : Mechanism and kinetics study of sulfuric acid leaching of titanium from titanium-bearing electric furnace slag, J. mater. Res. Technol., 9(2) pp.1750-1758. https://doi.org/10.1016/j.jmrt.2019.12.006
  25. Shin, D.J., Joo, S.-H., Lee, D., et al., 2020 : Leaching Behavior of Titanium from Na2TiO3, Mater. Trans, 61(1), pp.150-155. https://doi.org/10.2320/matertrans.mt-m2019198
  26. Shin, D.J., Joo, S.-H., Lee, D., et al., 2020 : The Manufacture of Synthetic Rutile by Solvent Extraction of Tri-Alkyl Phosphine Oxide from HCl Leaching Solution of Soda-Roasted Ilmenite Ore, Metals, 10(5), pp.588. https://doi.org/10.3390/met10050588
  27. Yoo, K., Jha, M.K., Kim, M.S., et al., 2008 : Separation of Ni and Fe from H2SO4 leaching solution of scrapped Fe-Ni alloy, J. of Korean Inst. of Resources Recycling, 17(1), pp.80-87.