DOI QR코드

DOI QR Code

Urban Heat Mitigation Effect Analysis based on the Land Use Location Distribution by Using an Ecosystem Service Valuation Model

생태계 서비스 가치평가 모형을 이용한 토지이용 위치분배에 따른 도시 열저감 효과분석

  • Sangjun, Kang (Department of Urban Planning.Real Estate, Gangneung-Wonju National University)
  • 강상준 (국립강릉원주대학교 도시계획.부동산학과)
  • Received : 2022.09.30
  • Accepted : 2022.11.03
  • Published : 2022.12.31

Abstract

The purpose of this study is to explore whether open spaces with land use characteristics of forest green areas can have different influence on the urban heat reduction depending on the location distribution, through the case of Gangneung-si downtown area. As a research method, the InVest Urban Cooling Model, which is a thermal phenomenon analysis model, is employed based on the most recent data available in 2018. In order to focus on the effect of location distribution of open space in the city, the downtown area is set as the observation area, not the entire city. The analysis of the land use location distribution scenarios shows that large-scale forests or clustered forests are more effective in reducing atmospheric heat in the region than several small-scale forests.

본 연구의 목적은 산림녹지의 토지이용 특성을 갖는 오픈스페이스가 그 위치분배에 따라 도시 열저감에 서로 다른 정도로의 영향을 미칠 수 있는지를 강릉시 도심지역 사례를 통해 살펴보는 것이다. 연구방법으로는 도심 내 열현상 해석모델인 InVest Urban Cooling Model을 사용하였고 가용한 최근 자료 시점인 2018년을 기준으로 진행하였다. 연구대상지는 도심 내 오픈스페이스 위치분배 효과에 초점을 두기 위하여 도시 전체가 아닌 도심부만을 관찰지역으로 설정하였다. 토지이용 위치분배 시나리오 분석을 통해 본 결과 위치분배관점에서 오픈스페이스를 증가시키되 여러 개의 소규모 산림보다는 대규모 산림 또는 군집화된 산림이 지역 내 대기 열저감 효과에 더 효과적인 것으로 나타났다.

Keywords

Acknowledgement

본 논문은 2020년 대한민국 교육부와 한국연구재단의 지원을 받아 수행된 연구입니다(NRF-2020S1A3A2A01095064)

References

  1. Antrop M. 2004. Landscape change and the urbanization process in Europe. Landscape and Urban Planning 67(1-4): 9-26. https://doi.org/10.1016/S0169-2046(03)00026-4
  2. Antrop M. 2000. Changing patterns in the urbanized countryside of Western Europe. Landscape Ecology 15: 257-270.
  3. Bartesaghi C, Osmond P, Peters A. 2018. Evaluating the cooling effects of green infrastructure: A systematic review of methods, indicators and data sources. Solar Energy 166: 486-508. https://doi.org/10.1016/j.solener.2018.03.008.
  4. Carsjens GJ, van der Knaap W. 2002. Strategic land-use allocation: dealing with spatial relationships and fragmentation of agriculture. Landscape and Urban Planning 58(2-4): 171-179. https://doi.org/10.1016/S0169-2046(01)00219-5
  5. Chen LD, Messing I, Zhang SR, Fu BJ, Ledin S. 2003. Land use evaluation and scenario analysis towards sustainable planning on the Loess plateau in China - case study in a small catchment. Catena 54(1-2): 303-316. https://doi.org/10.1016/S0341-8162(03)00071-7
  6. Cho HS, Joung YJ, Choi MJ. 2014. Effects of the urban spatial characteristics on urban heat island. Korea Environmental Policy and Administration 22(2): 27-43. [Korean Literature] https://doi.org/10.15301/jepa.2014.22.4.27
  7. Chen B, Chen G. 2006. Ecological footprint accounting based on emergy: a case study of the Chinese society. Ecological Modeling 198: 101-114. https://doi.org/10.1016/j.ecolmodel.2006.04.022
  8. Deilami K, Kamruzzaman M, Liu Y. 2018. Urban heat island effect: A systematic review of spatio-temporal factors, data, methods, and mitigation measures. International Journal of Applied Earth Observation and Geoinformation 67: 30-42. https://doi.org/https://doi.org/10.1016/j.jag.2017.12.009
  9. Jo YA. 2009. Empirical study on the relationship between compact city and transportation energy consumption: the case of 7 metropolitan cities. Korean Society and Public Adminstration 19(4): 113-132. [Korean Literature]
  10. Kim HC, Ahn KY. 2011. The effects of compact city planning strategies on commuting distance of different income levels: focused on Seoul, Korea. Urban Design 12(1): 55-70. [Korean Literature]
  11. Kang SJ. 2020. Exploratory analysis for the concentration of PM10 air particulates and the morphological pattern of greeinfra: the case of Gyeonggido. GRI Review 22(4): 25-40. [Korean Literature]
  12. Kunapo J, Fletcher TD, Ladson AR, Cunningham L, Burns MJ. 2018. A spatially explicit framework for climate adaptation. Urban Water Journal 15(2): 159-166. https://doi.org/10.1080/1573062X.2018.1424216
  13. Lee YJ, Ham JS, Hwang SY, Choi J. 2020. Analysis of the relationship between fine dust emissions and land cover types in Gyeonggi-do. Journal of KARG 26(3): 185-195. [Korean LIterature]
  14. McDonald RI, Kroeger T, Boucher T, Wang L, Salem R. 2016. Planting Healthy Air: A global analysis of the role of urban trees in addressing particulate matter pollution and extreme heat. CAB International, 128-139.
  15. Nam KC, Kim HS, Son MS. 2008. A study on the correlation between compact of population and transport energy: An application of compact Index. Journal of Korea Planning Association 43(2): 155-168. [Korean Literature]
  16. Phelan PE, Kaloush K, Miner M, Golden J, Phelan B, Iii HS, Taylor RA. 2015. Urban Heat Island: Mechanisms, Implications, and Possible Remedies. Annual Review of Environment and Resources, 285-309. https://doi.org/10.1146/annurev-environ102014-021155
  17. Soille P, Vogt P. 2009. Morphological segmentation of binary patterns. Pattern Recognition Letters 30: 456-459. https://doi.org/10.1016/j.patrec.2008.10.015
  18. Yin RS, Xiang Q, Xu JT, Deng XZ. 2010. Modeling the driving forces of the land use and land cover changes along the upper Yangtze river of China. Environmental Management 45: 454-465. https://doi.org/10.1007/s00267-009-9377-6
  19. Wickham J, Riitters K, Wade T, Vogt P. 2010. A national assessment of GI and change for the conterminous United States using morphological image processing. Landscape and Urban Planning 94: 186-195. https://doi.org/10.1016/j.landurbplan.2009.10.003
  20. Zardo L, Geneletti D, Prez-soba M, Eupen M Van. 2017. Estimating the cooling capacity of green infrastructures to support urban planning. Ecosystem Services 26: 225-235. https://doi.org/10.1016/j.ecoser.2017.06.016
  21. Zawadzka JE, Harris JA, Corstanje R. 2021. Assessment of heat mitigation capacity of urban greenspaces with the use of InVEST urban cooling model, verified with day-time land surface temperature data. Landscape and Urban Planning 214: 104163. https://doi.org/10.1016/j.landurbplan.2021.104163