DOI QR코드

DOI QR Code

Consistency Analysis between Predicted and Measured PM10 and NO2 Air Quality During Environmental Impact Assessment of Linear Construction Projects

선형사업에 대한 환경영향평가 시 대기질 예측치와 실측치의 정합성 분석 - PM10과 NO2를 중심으로 -

  • Received : 2022.09.22
  • Accepted : 2022.12.22
  • Published : 2022.12.31

Abstract

Since air pollution has become a global issue to be managed, the Republic of Korea (ROC) is protecting air quality by predicting the air condition before a construction project starts through EnvironmentalImpact Assessment (EIA) and measuring the air condition afterwards the construction project ends through Post-environmental Impact Assessment (PEIA). The aim of this study consists on verifying the predicted and measured concentration data and analyzing their consistency in order to deduce improvement directions. Linear EIA projects which the investigation during operation period have been concluded between years 2017 and 2019 were used. As a result, the following improvement directions were suggested: reduction of EIA air quality standards, strengthen the management of projects with construction duration longer than 5 years, incorporation of first or second quarter (winter or spring) into the investigation period, consideration of construction equipment or conditions for better prediction. The strength of this study is that we arranged and utilized EIA predicted and PEIA measured data to understand the present EIA procedure and made meaningful suggestions through the consistency analysis contributing to air quality maintenance and investigation methodology enhancement.

대기오염이 국제적으로 해결해야 하는 공통과제가 되었으며 국내에서는 지나친 대기오염을 예방하기 위해 개발 사업 이전에 환경영향평가를 통해 대기질 영향을 예측하고 사업 진행 이후에는 사후환경영향 조사를 통해 대기질을 관리하고 있다. 해당 데이터를 확인하고 정합성을 분석하여 조사과정과 영향 예측기준 등에 대한 개선 방향을 제시하고자 하였다. 운영 시 측정까지 완료된 2017년에서 2019년 사이의 환경영향평가 대상 사업 중 선형사업의 공사 시 농도를 대상으로 연구를 진행하였다. 분석 결과는 크게 데이터를 비교하여 환경영향평가 예측치의 대기오염 기준 하향, 5년 이상 장기사업은 오염물질 배출 기준 등을 강화, 현황조사 시 농도가 높게 실측되는 1분기와 2분기를 포함하는 개선방안과 정합성 분석을 통해 대기질의 과대 추정을 방지하기 위해 투입되는 건설장비의 종류나 사업 조건들을 설정하여 상황에 맞는 적합한 최대 배출농도를 예측하는 방향을 제시하였다. 본 연구는 데이터를 활용하여 환경영향평가 과정의 현황을 파악하고 그로부터 대기질 유지를 위한 규정이나 조사 방법 등 개선이 필요한 요소들을 파악하여 개선방안을 제안했다는 데 의의가 있다.

Keywords

Acknowledgement

본 결과물은 환경부의 재원으로 한국환경산업기술원의 ICT기반 환경영향평가 의사결정 지원 기술개발사업의 지원을 받아 연구되었습니다(2020002990009).

References

  1. Bergstra AD, Brunekreef B, Burdorf A. 2021. The influence of industry-related air pollution on birth outcomes in an industrialized area. Environmental Pollution, 269.
  2. Bremer N. 2017. Post-environmental impact assessment monitoring of measures or activities with significant transboundary impact: an assessment of customary international law. Reciel 26(1): 80-90. https://doi.org/10.1111/reel.12194
  3. Choi YY, Cho HJ, Hwang JH, Kim YJ, Lim NO, Lee JY, Lee JH, Sung MJ, Jeon SW, Sung HC. 2021. Compaint-based data demands for advancement of environmental Impact Assessment, J. Korean Env. Res. Tech. 24(6): 49-65.
  4. Guttikunda SK, Gurjar BR. 2012. Role of meteorology in seasonality of air pollution in megacity Delhi, India. Environ Monit Assess 184: 3199-3211. https://doi.org/10.1007/s10661-011-2182-8
  5. Han Y, Jiang P, Dong T, Ding X, Chen T, Villanger GD, Aase H, Huang L, Xia Y. 2018. Maternal air pollution exposure and preterm birth in Wuxi, China: Effect modification by maternal age. Ecotoxicology and Environmental Safety 157: 457-462. https://doi.org/10.1016/j.ecoenv.2018.04.002
  6. Joo YJ, Sagong H. 2022. A study on the improvement of the consultations on amendment in Environmental Impact Assessment of industrial complex development. J. Environ. Impact Assess 31(3): 129-140.
  7. Jung CH, Cho YS, Hwang SM, Jung YG, Ryu JC, Shin DS. 2007. Analysis of measuremnet error for PM10 mass concentration by intercomparison study. J. KOSAE 23(6): 689-698. https://doi.org/10.5572/KOSAE.2007.23.6.689
  8. Kim D, Bae Y, Kim S. 2022. A study on atmospheric dispersion modeling methodology for trafficrelated air pollutions in Korea. J. Korean Soc. Transp. 40(3): 380-399. https://doi.org/10.7470/jkst.2022.40.3.380
  9. Kim SC. 2010. A review of temperatrue measurement of fire driven flow using thermocouplemeasurement bias. J. of Korean Institute of Fire Sci. & Eng. 24(6): 98-103. [Korean Literature]
  10. Koening JQ. 1999. Air pollution and asthma. J. Allergy Clin Immunol. 104: 717-22. https://doi.org/10.1016/S0091-6749(99)70280-0
  11. Korea Environment Institute. 2017. Environmental Impact Assessment Guideline Series A Ver 2.0. p. 52. [Korean Literature]
  12. Lim NO, Hwang J, Lee S, Yoo Y, Choi Y, Jeon S. 2022. Spatialization and prediction of seasonal NO2 pollution due to climate change in the Korean capital area through land use regression modeling. Int. J. Environ. Res. Public Health 19: 5111. https://doi.org/10.3390/ijerph19095111
  13. Liu Y, Wu J, Yu D, Ma Q. 2018. The relationship between urban form and air pollution depends on seasonality and city size. Environmental Science and Pollution Research 25: 15554-15567 https://doi.org/10.1007/s11356-018-1743-6
  14. Ministry of Environment. 2009. Guidelines for composition of Environmental Impact Assessment report by project types. p. 9. [Korean Literature]
  15. Park J, Jung K, Chang J, Kwon J, You H. 2010. Evaluation of predicted driving postures in RAMSIS digital human model simulation. IE Interfaces 23(2): 100-107. [Korean Literature]
  16. Qureshi MI, Rasli AM, Awan U, Ma J, Ali G, Faridullah, Alam A, Sajjad F, Zaman K. 2015. Environment and air pollution: health services bequeath to grotesque menace. Environ Sci Pollut Res. 22: 3467-3476 https://doi.org/10.1007/s11356-014-3584-2
  17. Rai R, Rajput M, Agrawal M, Agrawal SB. 2011. Gaseous air pollutants: a review on current and future trends of emissions and impact on agriculture. Journal of Scientific Research 55: 77-102.
  18. Ravindra K, Singh T, Pandey V, Mor S. 2020. Air pollution trend in Chandigarh city situated in Indo-Gangetic Plains: understanding seasonality and impact of mitigation strategies. Science of the Total Environment 729(2020): 138717. https://doi.org/10.1016/j.scitotenv.2020.138717
  19. Tetteh IK, Awuah E, Frempong E. 2006. Postproject analysis: the use of a network diagram for environmental evaluation of the Barekese Dam, Kumasi, Ghana. Environmental Modeling and Assessment 11(2006): 235-242. https://doi.org/10.1007/s10666-005-9021-7
  20. World Health Organization. 2021. WHO global air quality guidelines: particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. World Health Organization. https://apps.who.int/iris/handle/10665/345329. License: CC BY-NC-SA 3.0 IGO
  21. Yim B, Kim J, Lee K, Hong H, Kim S. 2011. Noise contour map designed from validation study of model for predicting aircraft noise. Journal of Environmental Impact Assessment 21(6). 893-901. [Korean Literature] https://doi.org/10.14249/EIA.2012.21.6.893
  22. Zhao HZ, Ma AJ, Liang XG, Shi PL, Meng FS. 2012. Procedia Environmental Sciences 13(2012): 1754-1759. https://doi.org/10.1016/j.proenv.2012.01.169