DOI QR코드

DOI QR Code

Geotechnical behaviour of nano-silica stabilized organic soil

  • Kannan, Govindarajan (Centre for Advanced Research in Environment, School of Civil Engineering, SASTRA Deemed to be University) ;
  • Sujatha, Evangelin Ramani (Centre for Advanced Research in Environment, School of Civil Engineering, SASTRA Deemed to be University)
  • 투고 : 2021.05.14
  • 심사 : 2021.12.01
  • 발행 : 2022.02.10

초록

Suitable techniques to stabilize organic soil and improve its engineering behaviour are in demand. Despite various alternatives, nano-additives proved to be an effective stabilizer owing to their strength enhancing properties. The study focuses on using nano-silica as a potential stabilizer to improve organic silt. Soil was treated with four dosages of nano-silica namely 0.2%, 0.4%, 0.6% and 0.8% of dry weight of the soil. Nano-silica treated soil showed a strength increase of nearly 25% at a dosage of 0.4% after curing for two hours. Strength of the treated soil improved with age. Strength improved by nearly 62.9% after 28 days of curing and 221.4% after 180 days of curing due to formation of Calcium - Silicate - Hydrate (CSH) gel in the soil matrix. Dosage of 0.6% nano-silica is observed to be the optimum dosage. Coefficient of permeability and compression index showed an increase by 13.32 and 5.5 times respectively owing to aggregation of particles and creation of void spaces as visualized from the scanning electron micrographs. Further model foundation study and numerical parametric studies using PLAXIS 2D indicate that optimized and economic results can be obtained by varying the additive dosage with depth.

키워드

과제정보

The authors thank the Vice Chancellor and the management of SASTRA Deemed University, Thanjavur, India for the support and facilities provided to carry out this work successfully.

참고문헌

  1. Ahmadi, H. (2019), "Experimental study of the effect of nanoadditives on the stiffness of cemented fine sand", Int. J. Geotech. Eng., https://doi.org/10.1080/19386362.2019.1663067.
  2. Ahmadi, H. and Shafiee, O. (2019), "Experimental comparative study on the performance of nano-SiO2 and microsilica in stabilization of clay", Eur. Phys. J Plus., 134. https://doi.org/10.1140/epjp/i2019-12918-1.
  3. Ali, O.K. and Abbas, H.O., (2019), "Performance assessment of screw piles embedded in soft clay", Civ. Eng. J., 5(8), 1788-1798. https://doi.org/10.28991/cej-2019-03091371.
  4. Alsharef, J.M.A., Taha, M.R., Firoozi, A.A. and Govindasamy, P. (2016), "Potential of using nanocarbons to stabilize weak soils", Appl. Environ. Soil Sci., https://doi.org/10.1155/2016/5060531.
  5. Ansary, M.A., Noor, M.A. and Islam, M. (2007), "Effect of fly ash stabilization on geotechnical properties of Chittagong coastal soil", Solid Mech. Appl., 146, 443-454. https://doi.org/10.1007/978-1-4020-6146-2_26.
  6. ASTM D1194-94 (1994), Standard Test Method for Bearing Capacity of Soil for Static Load and Spread Footings (Withdrawn 2003), ASTM International, West Conshohocken, PA.
  7. ASTM D427-04 (2004), Method for shrinkage factors of soils by the mercury method (Withdrawn 2008), ASTM International, West Conshohocken, PA.
  8. ASTM D698 (2012), Standard test methods for laboratory compaction characteristics of soil using standard effort (12 400ft-lbf/ft3 (600 kN-m/m3)), ASTM International, West Conshohocken, PA.
  9. ASTM D2166 / D2166M (2016), Standard test method for unconfined compressive strength of cohesive soil, ASTM International, West Conshohocken, PA.
  10. ASTM D5856 (2015), Standard test method for measurement of hydraulic conductivity of porous material using a rigid-wall, compaction-mold permeameter, ASTM International, West Conshohocken, PA.
  11. ASTM D2487 (2017), Standard practice for classification of soils for engineering purposes (Unified Soil Classification System), ASTM International, West Conshohocken, PA.
  12. ASTM D4318 (2017), Standard test methods for liquid limit, plastic limit, and plasticity index of soils, ASTM International, West Conshohocken, PA.
  13. ASTM D5890 (2019), Standard test method for swell index of clay mineral component of geosynthetic clay liners, ASTM International, West Conshohocken, PA.
  14. ASTM D2435 / D2435M (2020), Standard test methods for one-dimensional consolidation properties of soils using incremental loading, ASTM International, West Conshohocken, PA.
  15. ASTM D2974 (2020), Standard test methods for determining the water (moisture) content, ash content, and organic material of peat and other organic soils, ASTM International, West Conshohocken, PA.
  16. Bahmani, S.H., Farzadnia, N., Asadi, A. and Huat, B.B.K. (2016), "The effect of size and replacement content of nanosilica on strength development of cement treated residual soil", Constr. Build. Mater., 118, 294-306. https://doi.org/10.1016/j.conbuildmat.2016.05.075.
  17. Bahmani, S.H., Huat, B.B.K., Asadi, A. and Farzadnia, N. (2014), "Stabilization of residual soil using SiO2 nanoparticles and cement", Constr. Build. Mater., 64, 350-359. https://doi.org/10.1016/j.conbuildmat.2014.04.086.
  18. Bahrami, R., Khayat, N. and Nazarpour, A. (2020), "Effect of nano-stabilizer on geotechnical properties of leached gypsiferous soil", Geomech. Eng., 23(2), 103-113. https://doi.org/10.12989/gae.2020.23.2.103.
  19. Bangladesh National Building Code (2015), Volume 2, Part 6, Bangladesh.
  20. Bobet, A., Hwang, J., Johnston, C.T. and Santagata, M. (2011), "One-dimensional consolidation behavior of cement-treated organic soil", Can. Geotech. J. 48(7), 1100-1115. https://doi.org/10.1139/t11-020.
  21. BS EN 1997-1 (2004), Eurocode 7: Geotechnical design-Part 1: General rules.
  22. Buazar, F. (2019), "Impact of Biocompatible Nanosilica on Green Stabilization of Subgrade Soil"; Sci. Rep., 9. https://doi.org/10.1038/s41598-019-51663-2.
  23. Changizi, F. and Haddad, A. (2017), "Improving the geotechnical properties of soft clay with nano-silica particles", Proc. Inst. Civ. Eng. Gr. Improv., 170(2), 62-71. https://doi.org/10.1680/jgrim.15.00026.
  24. Changizi, F. and Haddad, A. (2015), "Strength properties of soft clay treated with mixture of nano-SiO2 and recycled polyester fiber", J. Rock Mech. Geotech. Eng., 7(4), 367-378. https://doi.org/10.1016/j.jrmge.2015.03.013.
  25. Chen, X., Zhang, J., Xiao, Y. and Li, J. (2015), "Effect of roughness on shear behavior of red clay-concrete interface in large-scale direct shear tests", Can. Geotech. J., 52(8), 1122-1135. https://doi.org/10.1139/cgj-2014-0399.
  26. Chheng, C. and Likitlersuang, S. (2018), "Underground excavation behaviour in Bangkok using three-dimensional finite element method", Comput. Geotech. 9, 68-81. https://doi.org/10.1016/j.compgeo.2017.09.016.
  27. Choobbasti, A.J. and Kutanaei, S.S. (2017), "Microstructure characteristics of cement-stabilized sandy soil using nanosilica", J. Rock Mech. Geotech. Eng., 9(5), 981-988. https://doi.org/10.1016/j.jrmge.2017.03.015.
  28. Choobbasti, A.J., Samakoosh, M.A. and Kutanaei, S.S. (2019), "Mechanical properties soil stabilized with nano calcium carbonate and reinforced with carpet waste fibers", Constr. Build. Mater., 211, 1094-1104. https://doi.org/10.1016/j.conbuildmat.2019.03.306.
  29. Dash, S.K., Sireesh, S and Sitharam, T.G. (2003), "Microstructure characteristics of cement-stabilized sandy soil using nanosilica", Geotext. Geomembranes., 21(4), 197-219. https://doi.org/10.1016/S0266-1144(03)00017-7.
  30. Erzin, Y. and Gunes, N. (2013), "The unique relationship between swell percent and swell pressure of compacted clays", Bull. Eng. Geol. Environ., 72, 71-80. https://doi.org/10.1007/s10064-013-0461-z.
  31. Ezeakacha, C.P., Rabbani, A., Salehi, S. and Ghalambor, A. (2018), "Integrated image processing and computational techniques to characterize formation damage", Proc. - SPE Int. Symp. Form Damage Control, Louisiana, February. https://doi.org/10.2118/189509-ms.
  32. Firoozi, A.A., Olgun, C.G., Firoozi, A.A. and Baghini, M.S. (2017), "Fundamentals of soil stabilization", Int. J. Geo-Eng., 8. https://doi.org/10.1186/s40703-017-0064-9.
  33. Gallagher, P.M., Pamuk, A. and Abdoun, T. (2007), "Stabilization of Liquefiable Soils Using Colloidal Silica Grout", J. Mater. Civ. Eng., 19, 33-40. https://doi.org/10.1061/(asce)0899-1561(2007)19:1(33).
  34. Gao, L., Ren, K., Ren, Z. and Yu, X. (2018), "Study on the shear property of nano-MgO-modified soil", Mar. Georesour. Geotechnol., 36(4), 465-470. https://doi.org/10.1080/1064119X.2017.1335813.
  35. Garcia, S., Trejo, P., Ramirez, O., Molina, J.L. and Hernandez, N. (2017), "Influence of Nanosilica on compressive strength of lacustrine soft clays", Proceedings of the 19th International Conference on Soil Mechanics and Geotechnical Engineering, Seoul, South Korea, September.
  36. Ghadr, S., Langroudi, A.A., Hung, C., O'Kelly, B.C., Bahadori, H. and Ghodsi, T. (2020), "Stabilization of sand with colloidal nanosilica hydrosols", Appl. Sci., 10(15). https://doi.org/10.3390/app10155192.
  37. Ghadr, S., Assadi-Langroudi, A. and Hung, C. (2020), "Stabilisation of peat with colloidal nanosilica", Mires. Peat., 26. https://doi.org/10.19189/MaP.2019.OMB.StA.1896.
  38. Ghasabkolaei, N., Janalizadeh, A. and Jahanshahi, M. (2016), "Physical and geotechnical properties of cement-treated clayey soil using silica nanoparticles: An experimental study", Eur. Phys. J. Plus., 131. https://doi.org/10.1140/epjp/i2016-16134-3.
  39. Ghasabkolaei, N., Choobbasti, A.J., Roshan, N. and Ghasemi, S.E. (2017), "Geotechnical properties of the soils modified with nanomaterials: A comprehensive review", Arch. Civ. Mech. Eng., 17(3), 639-650. https://doi.org/10.1016/j.acme.2017.01.010.
  40. Ghazavi, M. and Bolhasani, M. (2010), "Unconfined compression strength of clay improvement with lime and nano-silica", Proceedings of the 6th International Congress on Environmental Geotechnics, New Delhi, November.
  41. Ghazi, H. (2011), "The effects of Nano-material additives on the basic properties of soil", Proceedings of the 14th Asian Regional Conference on Soil Mechanics and Geotechnical Engineering, China, May.
  42. Gupta, D. and Kumar, A. (2017), "Stabilized soil incorporating combinations of rice husk ash, pond ash and cement", Geomech. Eng., 12(1), 85-109. https://doi.org/10.12989/gae.2017.12.1.085.
  43. Hidalgo, C., Carvajal, G. and Munoz, F. (2019) "Laboratory evaluation of finely milled brick debris as a soil stabilizer", Sustain., 11(4). https://doi.org/10.3390/su11040967.
  44. Ijimdiyaa, T.S., Ashimiyu, A.L. and Abubakar, D.K. (2012) "Stabilization of black cotton soil using groundnut shell ash", Electron. J. Geotech. Eng., 17, 3645-3652.
  45. Kananizadeh, N., Ebadi, T., Khoshniat, S.A. and Mousavirizi, S.E. (2011), "The Positive Effects of Nanoclay on the Hydraulic Conductivity of Compacted Kahrizak Clay Permeated with Landfill Leachate", Clean - Soil Air Water, 39(7), 605-611. https://doi.org/10.1002/clen.201000298.
  46. Karthick, S., Muralidharan, S., Lee, H.S., Kwon, S.J. and Saraswathy, V. (2019), "Reliability and long-term evaluation of GO-MnO2 nano material as a newer corrosion monitoring sensor for reinforced concrete structures", Cement Concrete Compos., 100, 74-84. https://doi.org/10.1016/j.cemconcomp.2019.03.012.
  47. Katti, A.R. and Shingotte, S.B. (2019), "Laboratory study on consolidation settlement of foundation on soft saturated marine clay overlain by geocells infilled with sand", Proceedings of Indian Geotechnical Conference 2019, Surat, India, December.
  48. Krishnan, J. and Shukla, S. (2019), "The behaviour of soil stabilised with nanoparticles: an extensive review of the present status and its applications", Arab. J. Geosci., 12. https://doi.org/10.1007/s12517-019-4595-6.
  49. Luo, H.L., Hsiao, D.H., Lin, D.F. and Lin, C.K. (2012), "Cohesive Soil Stabilized Using Sewage Sludge Ash/Cement and Nano Aluminum Oxide", Int. J. Transp. Sci. Technol., 1(1), 83-99. https://doi.org/10.1260/2046-0430.1.1.83.
  50. Lv, Q., Chang, C., Zhao, B. and Ma, B. (2018), "Loess Soil Stabilization by Means of SiO2 Nanoparticles, Soil. Mech. Found. Eng., 54, 409-413. https://doi.org/10.1007/s11204-018-9488-2.
  51. Mishra, D.P. and Das, S.K. (2012), "One-dimensional consolidation of sedimented stowed pond ash", Geotech. Geol. Eng., 30, 685-695. https://doi.org/10.1007/s10706-011-9486-x.
  52. Mohanty, S.K., Pradhan, P.K. and Mohanty, C.R. (2017), "Stabilization of expansive soil using industrial wastes", Geomech. Eng., 12(1), 111-125. https://doi.org/10.12989/gae.2017.12.1.111.
  53. National Building Code of India (2005), Group 2, Part 6, New Delhi, India.
  54. Norhasri, M.S.M., Hamidah, M.S. and Fadzil, A.M. (2017), "Applications of using nano material in concrete: A review", Constr. Build. Mater., 133, 91-97. https://doi.org/10.1016/j.conbuildmat.2016.12.005.
  55. NYC Building Code (2014), Chapter 18, Section 1804, New York.
  56. Pavlovic, Z., Risovic, D. and Novakovic, D. (2012). "Comparative study of direct and indirect image-based profilometry in characterization of surface roughness", Surf. Interface Anal., 44(7), 825-830. https://doi.org/10.1002/sia.4889.
  57. Qu, X., Alvarez, P.J.J. and Li, Q. (2013), "Applications of nanotechnology in water and wastewater treatment", Water. Res. 47(12), 3931-3946. https://doi.org/10.1016/j.watres.2012.09.058.
  58. Rabbani, A. and Salehi, S. (2017), "Dynamic modeling of the formation damage and mud cake deposition using filtration theories coupled with SEM image processing", J. Nat. Gas. Sci. Eng., 42, 157-168. https://doi.org/10.1016/j.jngse.2017.02.047.
  59. Rastegarnia, A., Alizadeh, S.M.S., Esfahani, M.K., Amini, O. and Utyuzh, A.S. (2020), "The effect of hydrated lime on the petrography and strength characteristics of Illite clay", Geomech. Eng., 22(2), 143-152. https://doi.org/10.12989/gae.2020.22.2.143.
  60. Sadoglu, E., Cure, E., Moroglu, B. and Uzuner, B.A. (2009), "Ultimate loads for eccentrically loaded model shallow strip footings on geotextile-reinforced sand", Geotext. Geomembranes, 27(3), 176-182. https://doi.org/10.1016/j.geotexmem.2008.11.002.
  61. Sakr, M.A., Shahin, M.A. and Metwally, Y.M. (2009), "Utilization of lime for stabilizing soft clay soil of high organic content", Geotech. Geol. Eng., 27, 105-113. https://doi.org/10.1007/s10706-008-9215-2.
  62. Saloma, Nasution, A., Imran, I. and Abdullah, M. (2015), "Improvement of concrete durability by nanomaterials", Procedia Eng., 125, 608-612. https://doi.org/10.1016/j.proeng.2015.11.078.
  63. Shahsavani, S., Vakili, A.H. and Mokhberi, M. (2020), "The effect of wetting and drying cycles on the swelling-shrinkage behavior of the expansive soils improved by nanosilica and industrial waste", Bull. Eng. Geol. Environ., 79, 4765-4781. https://doi.org/10.1007/s10064-020-01851-6.
  64. Shooshpasha, I. and Shirvani, R.A. (2015), "Effect of cement stabilization on geotechnical properties of sandy soils", Geomech. Eng., 8(1), 17-31. https://doi.org/10.12989/gae.2015.8.1.017.
  65. Sikora, P., Elrahman, M.A. and Stephan, D. (2018), "The influence of nanomaterials on the thermal resistance of cement-based composites-A review", Nanomater., 8(7), 1-33. https://doi.org/10.3390/nano8070465.
  66. Tabarsa, A., Latifi, N., Meehan, C.L. and Manahiloh, K.N. (2018), "Laboratory investigation and field evaluation of loess improvement using nanoclay - A sustainable material for construction", Constr. Build. Mater., 158, 454-463. https://doi.org/10.1016/j.conbuildmat.2017.09.096.
  67. Taha, M.R., Alsharef, J.M.A., Khan TA, Aziz, M and Gaber, M (2018), "Compressive and tensile strength enhancement of soft soils using nanocarbons", Geomech. Eng., 16(5), 559-567. https://doi.org/10.12989/gae.2018.16.5.559.
  68. Taha, M.R. and Ying, T. (2018), "Effects of carbon nanotube on kaolinite: basic geotechnical behavior", Proceedings of the 18th Annual International Conference on Composites/Nano Engineering, Alaska, July.
  69. Taha, M.R. and Taha, O.M.E. (2012), "Influence of nano-material on the expansive and shrinkage soil behavior", J. Nanoparticle. Res. 14. https://doi.org/10.1007/s11051-012-1190-0.
  70. Tastan, E.O., Edil, T.B., Benson, C.H. and Aydilek, A.H. (2011), Stabilization of organic soils with fly ash, J. Geotech. Geoenviron. Eng., 137(9), 819-833. https://doi.org/10.1061/(asce)gt.1943-5606.0000502.
  71. Tejasvi, A. and Kumar, S. (2012), "Impact of fly ash on soil properties", Natl. Acad. Sci. Lett., 35, 13-16. https://doi.org/10.1007/s40009-011-0002-x.
  72. Thomas, G. and Rangaswamy, K. (2020), "Strengthening of cement blended soft clay with nano-silica particles", Geomech. Eng., 20(6), 505-516. https://doi.org/10.12989/gae.2020.20.6.505.
  73. Tinti. A., Tugnoli, V., Bonora, S. and Francioso, O. (2015), "Recent applications of vibrational mid-infrared (IR) spectroscopy for studying soil components: A review", J. Cent. Eur. Agric., 16(1), 1-22. https://doi.org/10.5513/JCEA01/16.1.1535.
  74. Vakili, A.H., Shojaei, S.I., Salimi M, Selamat, M.R.B. and Farhadi, M.S. (2020), "Contact erosional behaviour of foundation of pavement embankment constructed with nanosilica-treated dispersive soils", Soils Found., 60(1), 167-178. https://doi.org/10.1016/j.sandf.2020.02.001.
  75. Wong, C., Pedrotti, M., Mountassir, G.E. and Lunn, R.J. (2018), "A study on the mechanical interaction between soil and colloidal silica gel for ground improvement", Eng. Geol., 243, 84-100. https://doi.org/10.1016/j.enggeo.2018.06.011.